The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.
=head1 NAME

PDL::Graphics::PGPLOT::Window - A OO interface to PGPLOT windows

=head1 SYNOPSIS

 pdl> use PDL::Graphics::PGPLOT::Window
 pdl> $win = pgwin(Device => '/xs');
 pdl> $a = pdl [1..100]
 pdl> $b = sqrt($a)
 pdl> $win->line($b)
 pdl> $win->hold()
 pdl> $c = sin($a/10)*2 + 4
 pdl> $win->line($c)

In the following documentation the commands are not shown in their OO
versions. This is for historical reasons and should not cause too much
trouble.

=head1 DESCRIPTION

This package offers a OO interface to the PGPLOT plotting package. This
is intended to replace the traditional interface in
L<PDL::Graphics::PGPLOT|PDL::Graphics::PGPLOT>
and contains interfaces to a large number of PGPLOT routines. Below the
usage examples for each function tend to be given in the non-OO version for
historical reasons. This will slowly be changed, but in the meantime refer
to the section on OO-interface below to see how to convert the usage
information below to OO usage (it is totally trivial).

PDL::Graphics::PGPLOT::Window is an interface to the PGPLOT graphical
libraries.  It currently supports PGPLOT-5.2 and PGPLOT-5.2-cd2.  The
-cd2 version includes RGB output and anti-aliasing.

High-level plotting commands:

 imag       -  Display an image (uses pgimag/pggray/pgrgbi as appropriate)
 fits_imag  -  Display a FITS image in scientific coordinates
 cont       -  Display image as contour map
 fits_cont  -  Display a FITS image in scientific coordinates as a contour map
 vect       -  Display 2 images as a vector field
 fits_vect  -  Display 2 FITS images in sci. coordinates as a vector field
 ctab       -  Load an image colour table
 ctab_info  -  Get information about currently loaded colour table
 line       -  Plot vector as connected points
 tline      -  Plot a collection of vectors as lines
 lines      -  Plot a polyline, multicolor vector [threadable]
 points     -  Plot vector as points
 tpoints    -  Plot a collection of vectors as points [threadable]
 errb       -  Plot error bars
 bin        -  Plot vector as histogram (e.g. bin(hist($data)) )
 hi2d       -  Plot image as 2d histogram (not very good IMHO...)
 tcircle    -  Plot vectors as circles [threadable]
 label_axes -  Print axis titles
 legend     -  Create a legend with different texts, linestyles etc.

Low-level plotting commands:

 arrow      -  Draw an arrow
 poly       -  Draw a polygon
 rectangle  -  Draw a rectangle
 text       -  Write text in the plot area
 cursor     -  Interactively read cursor positions.
 circle     -  Draw a circle
 ellipse    -  Draw an ellipse.

Device manipulation commands:

 new           -  Construct a new output device
 pgwin         -  Exported hook to new()
 close         -  Close a PGPLOT output device.
 hold          -  Hold current plot window range - allows overlays etc.
 release       -  Release back to freshly autoscaling for each command.
 held          -  Indicates whether the current window is held.
 focus         -  Set focus to the given device.
 erase         -  Erase the current window (or panel).
 options       -  Get the options set for the present output device.
 id            -  The ID for the device.
 device        -  The device type.
 name          -  The window name.

Notes: C<$transform> for image/cont etc. is used in the same way as the
C<TR()> array in the underlying PGPLOT FORTRAN routine but is, fortunately,
zero-offset. The L<transform()|/transform> routine can be used to create this piddle.

For completeness: The transformation array connect the pixel index to a
world coordinate such that:

 X = tr[0] + tr[1]*i + tr[2]*j
 Y = tr[3] + tr[4]*i + tr[5]*j

=head2 Variable passing and extensions

In general variables are passed to the pgplot routines by using
C<get_dataref>
to get the reference to the values. Before passing to pgplot routines
however, the data are checked to see if they are in accordance with the
format (typically dimensionality) required by the PGPLOT routines.
This is done using the routine C<checkarg> (internal to PGPLOT). This routine
checks the dimensionality of the input data. If there are superfluous
dimensions of size 1 they will be trimmed away until the dimensionality
is correct. Example:

Assume a piddle with dimensions (1,100,1,1) is passed to C<line>, which
expects its inputs to be vectors. C<checkarg> will then return a piddle
with dimensions (100). If instead the same piddle was passed to C<imag>,
which requires 2D piddles as output, C<checkarg> would return a piddle
with dimensionality (100, 1) (Dimensions are removed from the I<start>)

Thus, if you want to provide support for another PGPLOT function, the
structure currently look like this (there are plans to use the Options
package to simplify the options parsing):

 # Extract the hash(es) on the commandline
 ($arg, $opt)=_extract_hash(@_);
 <Check the number of input parameters>
 <deal with $arg>
 checkarg($x, 3); # For a hypothetical 3D routine.
 &catch_signals;
 ...
 pgcube($n, $x->get_dataref);
 &release_signals;
 1;

(the catch_signals/release_signals pair prevent problems with the perl-PGPLOT
interface if the user hits c-C during an operation).

=head2 Setting options

All routines in this package take a hash with options as an optional
input. This options hash can be used to set parameters for the
subsequent plotting without going via the PGPLOT commands.

This is implemented such that the plotting settings (such as line width,
line style etc.) are affected only for that plot, any global changes made,
say, with C<pgslw()> are preserved. Some modifications apply when using
the OO interface, see below.

=head2 Alphabetical listing of standard options

The following options are always parsed. Whether they have any importance
depend on the routine invoked - e.g. line style is irrelevant for C<imag>,
or the C<justify> option is irrelevant if the display is on 'hold'.
This is indicated in the help text for the commands below.

The options are not case sensitive and will match for unique substrings,
but this is not encouraged as obscure options might invalidate what
you thought was a unique substring.

In the listing below examples are given of each option. The actual
option can then be used in a plot command by specifying it as an argument
to the function wanted (it can be placed anywhere in the command list).

E.g:

 $opt={COLOR=>2};
 line $x, $y, $opt; # This will plot a line with red color

If you are plotting to a hardcopy device then a number of
options use a different name:

  HardLW   instead of LineWidth
  HardCH   instead of CharSize
  HardFont instead of Font

  HardAxisColour instead of AxisColour
  HardColour     instead of Colour

[although I'm not sure when HardColour is actually used]

=over 4

=item align

If C<pix> is set, then images and plots are not stretched to fill the plot
area.  the C<align> string tells how to align them within the available
area.  'L' and 'R' shove the plot against the left and right edges,
respectively; 'B' and 'T' shove the plot against the bottom and top
edges.  The default is to center the image.  e.g. 'BL' puts the image
on the bottom left corner, while 'CT' centers the image horizontally
while placing it at the top of the available plot area.  This defaults
to 'BT' for non-justified images, to 'CC' for justified images.

=item arrow

This options allows you to set the arrow shape, and optionally size for
arrows for the vect routine. The arrow shape is specified as a hash
with the key FS to set fill style, ANGLE to set the opening angle of
the arrow head, VENT to set how much of the arrow head is cut out and
SIZE to set the arrowsize.

The following

 $opt = {ARROW => {FS=>1, ANGLE=>60, VENT=>0.3, SIZE=>5}};

will make a broad arrow of five times the normal size.

Alternatively the arrow can be specified as a set of numbers
corresponding to an extension to the syntax for pgsah. The equivalent to
the above is

 $opt = {ARROW => pdl([1, 60, 0.3, 5})};

For the latter the arguments must be in the given order, and if any are
not given the default values of 1, 45, 0.3 and 1.0 respectively will
be used.

=item arrowsize

The arrowsize can be specified separately using this option to the
options hash. It is useful if an arrowstyle has been set up and one
wants to plot the same arrow with several sizes. Please note that it is
B<not> possible to set arrowsize and character size in the same call to
a plotting function. This should not be a problem in most cases.

 $opt = {ARROWSIZE => 2.5};

=item axis

Set the axis value (see L</env>).  If you pass in a scalar you set the
axis for the whole plot.  You can also pass in an array ref for finer
control of the axes.

If you set the option to a scalar value, you get one of a few standard layouts.
You can specify them by name or by number:

 EMPTY  (-2) draw no box, axes or labels
 BOX    (-1) draw box only
 NORMAL (0)  draw box and label it with coordinates
 AXES   (1)  same as NORMAL, but also draw (X=0,Y=0) axes
 GRID   (2)  same as AXES, but also draw grid lines
 LOGX   (10) draw box and label X-axis logarithmically
 LOGY   (20) draw box and label Y-axis logarithmically
 LOGXY  (30) draw box and label both axes logarithmically

When using logarithmic axes (C<LOGX>, C<LOGY> and C<LOGXY>) you normally
need to log the data yourself, e.g.

  line $x->log10, $y, {axis=>'LOGX'};

For your convenience you can put PDL::Graphics::PGPLOT into
autolog mode. In this mode a call to C<line> or C<points>
will log the data for you and you can pass in the unmodified
data, e.g.

  autolog(1); # enable automatic logarithm calculation
  line $x, $y, {axis=>'LOGX'}; # automatically displays logged x data

You can use the function interface to enable autologging:

  autolog(1);

or use it with a window reference (mode switching on a per window basis)

  $win->autolog(1);

C<autolog> without arguments returns the current autolog setting (0=off,
1=on).

If you set the C<AXIS> option to an array ref, then you can specify the
box/axis options separately for the horizontal (ordinate; X
coordinate; 0th element) and vertical (abscissa; Y coordinate; 1st element))
axes.  Each element of the array ref should contain a PGPLOT format string.
Presence or absence of specific characters flags particular options.  For
normal numeric labels, the options are:

  A : draw axis for this dimension.
  B : draw bottom (X) or left (Y) edge of frame.
  C : draw top (X) or right (Y) edge of frame.
  G : draw Grid of vertical (X) or horizontal (Y) lines.
  I : Invert ticks: draw them outside the plot rather than inside.
  L : Label the axis Logarithmically.
  P : Extend ("Project") major tick marks outside the box.
  M : Numeric labels go in the alternate place above (X) or to the
           right (Y) of the viewport.
  N : Numeric labels go in the usual location below (X) or to the
           left  (Y) of the viewport
  T : Draw major tick marks at the major coordinate interval.
  S : Draw minor tick marks (subticks).
  V : Orient numeric labels Vertically.  Only applicable to Y.
           (The default is to write them parallel to the axis.)
  1 : Force decimal labelling, instead of automatic choice
  2 : Force exponential labeling, instead of automatic.

If you don't specify any axis value at all, the default is ['BCNST','BCNST']
for plots and ['BCINST','BCINST'] for images.  (These list ref elements are
handed on directly to the low-level PGPLOT routines).

In addition, you can specify that your axis labels should be printed
as days, hours, minutes, and seconds (ideal for julian dates and delta-t,
or for angular quantities).  You do that by setting additional character
flags on the affected axis:

  X : Use HH MM SS.S time labeling rather than conventional numeric
      labels.  The ordinate is in secsonds. Hours roll over at 24.
  Y : Like 'X' but the hour field runs past 24 if necessary.
  Z : Like 'X' but with a days field too (only shown where nonzero).
  H : Label the numbers with superscript d, h, m, and s symbols.
  D : Label the numbers with superscript o, ', and '' symbols.
  F : Omit first (lowest/leftmost) label; useful for tight layouts.
  O : Omit leading zeroes in numbers under 10 (e.g. " 3h 3m 1.2s"
      rather than "03h 03m 01.2s").

For example, to plot a numeric quantity versus Julian day of the year
in a standard boxed plot with tick marks, you can use ["BNCSTZHO","BCNST"].

=item border

Normally the limits are
chosen so that the plot just fits; with this option you can increase
(or decrease) the limits by either a relative
(ie a fraction of the original axis width) or an absolute amount.
Either specify a hash array, where the keys are C<TYPE> (set to
'relative' or 'absolute') and C<VALUE> (the amount to change the limits
by), or set to 1, which is equivalent to

 BORDER => { TYPE => 'rel', VALUE => 0.05 }

=item charsize

Set the character/symbol size as a multiple of the standard size.

 $opt = {CHARSIZE => 1.5}

The HardCH option should be used if you are plotting to a hardcopy device.

=item colour (or color)

Set the colour to be used for the subsequent plotting. This can be
specified as a number, and the most used colours can also be specified
with name, according to the following table (note that this only works for
the default colour map):

  0 - WHITE    1 - BLACK     2 - RED      3 - GREEN    4 - BLUE
  5 - CYAN     6 - MAGENTA   7 - YELLOW   8 - ORANGE  14 - DARKGRAY
 16 - LIGHTGRAY

However there is a much more flexible mechanism to deal with colour.
The colour can be set as a 3 or 4 element anonymous array (or piddle)
which gives the RGB colours. If the array has four elements the first
element is taken to be the colour index to change. For normal work you
might want to simply use a 3 element array with R, G and B values and
let the package deal with the details. The R,G and B values go from 0
to 1.

In addition the package will also try to interpret non-recognised
colour names using the default X11 lookup table, normally using the
C<rgb.txt> that came with PGPLOT.

For more details on the handling of colour it is best that the user
consults the PGPLOT documentation. Further details on the handling of
colour can be found in the documentation for the internal routine
L</_set_colour>.

The HardColour option should be used if you are plotting to a hardcopy device
[this may be untrue?].

=item diraxis

This sets the direction of the axes of a plot or image, when you don't explicitly
set them with the XRange and YRange options.  It's particularly useful when
you want (for example) to put long wavelengths (larger numbers) on the left
hand side of your plot, or when you want to plot an image in (RA,dec)
coordinates.

You can use either a scalar or a two-element perl array.  If you set it to
0 (the default) then PDL will guess which direction you want to go.  If you
set it to a positive number, the axis will always increase to the right. If
you set it to a negative number, the axis will always increase to the left.

For example, [0,0] is the default, which is usually right.  [1,1] tells
PGPLOT to always increase the axis values up and to the right.  For a
plot of intensity (y-axis) versus wavelength (x-axis) you could say
[-1,1].

This option is really only useful if you want to allow autoranging but
need to set the direction that the axis goes.  If you use the ranging
options (C<XRange> and C<YRange>), you can change the direction by changing
the order of the maximum and minimum values.  That direction will
override C<DirAxis>.

=item filltype

Set the fill type to be used by L</poly>, L</circle>,
L</ellipse>, and L</rectangle>
The fill can either be specified using numbers or name, according to the
following table, where the recognised name is shown in capitals - it is
case-insensitive, but the whole name must be specified.

 1 - SOLID
 2 - OUTLINE
 3 - HATCHED
 4 - CROSS_HATCHED

 $opt = {FILLTYPE => 'SOLID'};

(see below for an example of hatched fill)

=item font

Set the character font. This can either be specified as a number following
the PGPLOT numbering or name as follows (name in capitals):

 1 - NORMAL
 2 - ROMAN
 3 - ITALIC
 4 - SCRIPT

(Note that in a string, the font can be changed using the escape sequences
C<\fn>, C<\fr>, C<\fi> and C<\fs> respectively)

 $opt = {FONT => 'ROMAN'};

gives the same result as

 $opt = {FONT => 2};

The HardFont option should be used if you are plotting to a hardcopy device.

=item hatching

Set the hatching to be used if either fillstyle 3 or 4 is selected
(see above) The specification is similar to the one for specifying
arrows.  The arguments for the hatching is either given using a hash
with the key ANGLE to set the angle that the hatch lines will make
with the horizontal, SEPARATION to set the spacing of the hatch lines
in units of 1% of C<min(height, width)> of the view surface, and PHASE to
set the offset the hatching. Alternatively this can be specified as a
1x3 piddle C<$hatch=pdl[$angle, $sep, $phase]>.

 $opt = {FILLTYPE => 'HATCHED',
         HATCHING => {ANGLE=>30, SEPARATION=>4}};

Can also be specified as

 $opt = {FILL=> 'HATCHED', HATCH => pdl [30,4,0.0]};

For another example of hatching, see L</poly>.

=item justify

If C<justify> is set true, then the plot axes are shrunk to fit
the plot or image and it specifies the aspect ratio of pixel
coordinates in the plot or image.  Setting justify=>1 will
produce a correct-aspect-ratio, shrink-wrapped image or plot;
setting justify=>0.5 will do the same thing but with a short and
fat plot.  The difference between C<justify> and C<pix> is that
C<pix> does not affect the shape of the axes themselves.

=item linestyle

Set the line style. This can either be specified as a number following
the PGPLOT numbering:

 1 - SOLID line
 2 - DASHED
 3 - DOT-DASH-dot-dash
 4 - DOTTED
 5 - DASH-DOT-DOT-dot

or using name (as given in capitals above).
Thus the following two specifications both specify the line to be dotted:

 $opt = {LINESTYLE => 4};
 $varopt = {LINESTYLE => 'DOTTED'};

The names are not case sensitive, but the full name is required.

=item linewidth

Set the line width. It is specified as a integer multiple of 0.13 mm.

 $opt = {LINEWIDTH => 10}; # A rather fat line

The HardLW option should be used if you are plotting to a hardcopy device.

=item pitch

Sets the number of data pixels per inch on the output device.
You can set the C<unit> (see below) to change this to any other
PGPLOT unit (millimeters, pixels, etc.).   Pitch is device independent,
so an image should appear exactly the same size (e.g. C<Pitch=E<gt>100>
is 100 dpi) regardless of output device.

=item pix

Sets the pixel aspect ratio height/width.  The height is adjusted
to the correct ratio, while maintaining any otherwise-set pitch or scale
in the horizontal direction.  Larger numbers yield tall, skinny pixels;
smaller numbers yield short, fat pixels.

=item scale

Sets the number of output display pixels per data pixel.  You can set
the C<unit> (see below) to change this to number of PGPLOT units
(inches, millimeters, etc.) per data pixel.  C<scale> is deprecated,
as it is not device-independent; but it does come in handy for quick
work on digital displays, where aliasing might otherwise interfere
with image interpretation.  For example, C<scale=E<gt>1> displays
images at their native resolution.

=item Panel

It is possible to define multiple plot ``panels'' with in a single
window (see the L<NXPanel and NYPanel options in the
constructor|/new>).  You can explicitly set
in which panel most plotting commands occur, by passing either a
scalar or an array ref into the C<Panel> option.  There is also a
L<panel|PDL::Graphics::PGPLOT/panel> method, but its use is deprecated
because of a wart with the PGPLOT interface.

=item plotting & imaging range

Explicitly set the plot range in x and y. X-range and Y-range are set
separately via the aptly named options C<XRange> and C<YRange>. If omitted
PGPLOT selects appropriate defaults (minimum and maximum of the data range
in general). These options are ignored if the window is on hold.

  line $x, $y, {xr => [0,5]}; # y-range uses default
  line $x, $y, {XRange => [0,5], YRange => [-1,3]}; # fully specified range
  imag $im, {XRange => [30,50], YRange=>[-10,30]};
  fits_imag $im, {XRange=>[-2,2], YRange=>[0,1]};

Imaging requires some thought if you don't want to lose a pixel off
the edge of the image.  Pixels are value-centered (they are centered
on the coordinate whose value they represent), so the appropriate
range to plot the entirety of a 100x100 pixel image is C<[-0.5,99.5]> on
each axis.

=back

=head1 OBJECT-ORIENTED INTERFACE

This section will briefly describe how the PDL::Graphics::PGPLOT::Window
package can be used in an object-oriented (OO) approach and what the
advantages of this would be. We will start with the latter

=over

=item Multiple windows.

For the common user it is probably most interesting to use the OO interface
when handling several open devices at the same time. If you have one
variable for each plot device it is easier to distribute commands to the
right device at the right time. This is the angle we will take in the rest
of this description.

=item Coding and abstraction

At a more fundamental level it is desirable to approach a situation where
it is possible to have a generic plotting interface which gives access
to several plotting libraries, much as PGPLOT gives access to different
output devices. Thus in such a hypothetical package one would say:

  my $win1 = Graphics::new('PGPLOT', {Device => '/xs'});
  my $win2 = Graphics::new('gnuplot', {Background => 'Gray'};

From a more practical point of of view such abstraction also comes in
handy when you write a large program package and you do not want to import
routines nilly-willy in which case an OO approach with method calls is a
lot cleaner.

The pgwin exported constructor, arguably, breaks this philosophy; hopefully
it will ``wither away'' when other compatible modules are available.

=back

Anyway, enough philosophizing, let us get down to Earth and give some
examples of the use of OO PGPLOT. As an example we will take Odd (which
happens to be a common Norwegian name) who is monitoring the birth of
rabbits in O'Fib-o-nachy's farm (alternatively he can of course be
monitoring processes or do something entirely different). Odd wants the
user to be able to monitor both the birth rates and accumulated number
of rabbits and the spatial distribution of the births. Since these are
logically different he chooses to have two windows open:

  $rate_win = PDL::Graphics::PGPLOT::Window->new(Device => '/xw',
              Aspect => 1, WindowWidth => 5, NXPanel => 2);

  $area_win = PDL::Graphics::PGPLOT::Window->new(Device => '/xw',
              Aspect => 1, WindowWidth => 5);

See the documentation for L<new|/new> below for a full overview of the
options you can pass to the constructor.

Next, Odd wants to create plotting areas for subsequent plots and maybe
show the expected theoretical trends

  $rate_win->env(0, 10, 0, 1000, {XTitle => 'Days', YTitle => '#Rabbits'});
  $rate_win->env(0, 10, 0, 100, {Xtitle=>'Days', Ytitle => 'Rabbits/day'});

  $area_win->env(0, 1, 0, 1, {XTitle => 'Km', Ytitle => 'Km'});
  # And theoretical prediction.
  $rate_win->line(sequence(10), fibonacci(10), {Panel => [1, 1]});

That is basically it. The commands should automatically focus the relevant
window. Due to the limitations of PGPLOT this might however lead you to
plot in the wrong panel... The package tries to be smart and do this
correctly, but might get it wrong at times.

=head1 STATE and RECORDING

A new addition to the graphics interface is the ability to record plot
commands. This can be useful when you create a nice-looking plot on the
screen that you want to re-create on paper for instance. Or if you want
to redo it with slightly changed variables for instance. This is still
under development and views on the interface are welcome.

The functionality is somewhat detached from the plotting functions
described below so I will discuss them and their use here.

Recording is off by default. To turn it on when you create a new
device you can set the C<Recording> option to true, or you can set
the C<$PDL::Graphics::PGPLOT::RECORDING> variable to 1. I recommend doing the
latter in your C<.perldlrc> file at least since you will often have use
for recording in the perldl or pdl2 script.

=head2 Use of recording

The recording is meant to help you recreate a plot with new data or
to a different device. The most typical situation is that you have
created a beautiful plot on screen and want to have a Postscript file
with it. In the dreary old world you needed to go back and execute all
commands manually, but with this wonderful new contraption, the recorder,
you can just replay your commands:

  dev '/xs', {Recording => 1}
  $x = sequence(10)
  line $x, $x**2, {Linestyle => 'Dashed'}
  $s = retrieve_state() # Get the current tape out of the recorder.
  dev '/cps'
  replay $s

This should result in a C<pgplot.ps> file with a parabola drawn with a
dashed line. Note the command C<retrieve_state> which retrieves the current
state of the recorder and return an object (of type PDL::Graphics::State)
that is used to replay commands later.

=head2 Controlling the recording

Like any self-respecting recorder you can turn the recorder on and off
using the C<turn_on_recording> and C<turn_off_recording> respectively.
Likewise you can clear the state using the C<clear_state> command.

  $w=PDL::Graphics::PGPLOT::Window->new(Device => '/xs');
  $w->turn_on_recording;
  $x=sequence(10); $y=$x*$x;
  $w->line($x, $y);
  $w->turn_off_recording;
  $w->line($y, $x);
  $w->turn_on_recording;
  $w->line($x, $y*$x);
  $state = $w->retrieve_state();

We can then replay C<$state> and get a parabola and a cubic plot.

  $w->replay($state);

=head2 Tips and Gotchas!

The data are stored in the state object as references to the real
data. This leads to one good and one potentially bad consequence:

=over

=item The good is that you can create the plot and then subsequently
redo the same plot using a different set of data. This is best explained
by an example. Let us first create a simple gradient image and get
a copy of the recording:

  $im = sequence(10,10)
  imag $im
  $s=retrieve_state

Now this was a rather dull plot, and in reality we wanted to show an
image using C<rvals>. Instead of re-creating the plot (which of course
here would be the simplest option) we just change C<$im>:

  $im -= sequence(10,10)
  $im += rvals(10,10)

Now replay the commands

  replay $s

And hey presto! A totally different plot. Note however the trickery
required to avoid losing reference to C<$im>

=item This takes us immediately to the major problem with the recording
though. Memory leakage! Since the recording keeps references to the data
it can keep data from being freed (zero reference count) when you expect
it to be. For instance, in this example, we lose totally track of the
original $im variable, but since there is a reference to it in the state
it will not be freed

  $im = sequence(1000,1000)
  imag $im
  $s = retrieve_state
  $im = rvals(10,10)

Thus after the execution of these commands we still have a reference to
a 1000x1000 array which takes up a lot of memory...

The solution is to call C<clear> on the state variable:

  $s->clear()

(This is done automatically if the variable goes out of scope). I forsee
this problem to most acute when working on the C<perldl> or C<pdl2>
command line, but since this is exactly where the recording is most useful
the best advice is just to be careful and call clear on state variables.

If you are working with scripts and use large images for instance I would
instead recommend that you do not turn on recording unless you need it.

=back




=head1 FUNCTIONS

A more detailed listing of the functions and their usage follows. For
all functions we specify which options take effect and what other options
exist for the given function. The function descriptions below are all
given for the non-OO usage for historical reasons, but since the conversion
to an OO method is trivial there is no major need for concern. Whenever you
see a function example of the form

  Usage: a_simple_function($x, $y, $z [, $opt]);

and you wish to use the OO version, just let your mind read the above line
as:

  Usage: $win->a_simple_function($x, $y, $z [, $opt]);

where C<$win> is a PDL::Graphics::PGPLOT::Window object. That is all.


=head2 Window control functions.

=head2 pgwin

=for ref

Exported constructor for PGPLOT object/device/plot window.

=for usage

 Usage: pgwin($opt);
 Usage: pgwin($option->$value,...);
 Usage: pgwin($device);

Parameters are passed on to new() and can either be specified by hash
reference or as a list.

See the documentation fo PDL::Graphics::PGPLOT::Window::new for details.

Because pgwin is a convenience function, you can specify the device by
passing in a single non-ref parameter.  For even further convenience, you
can even omit the '/' in the device specifier, so these two lines
deliver the same result:

    $a = pgwin(gif);
    $a = new PDL::Graphics::PGPLOT::Window({Dev=>'/gif'});

=head2 new

=for ref

Constructor for PGPLOT object/device/plot window.

=for usage

  Usage: PDL::Graphics::PGPLOT::Window->new($opt);
  Usage: PDL::Graphics::PGPLOT::Window->new($option=>$value,...);

Options to new() can either be specified via a reference to a hash

  $win = PDL::Graphics::PGPLOT::Window->new({Dev=>'/xserve',ny=>2});

or directly, as an array

  # NOTE: no more {} !
  $win = PDL::Graphics::PGPLOT::Window->new(Dev=>'/xserve',ny=>2);

The following lists the recognised options:

=over

=item AspectRatio

The aspect ratio of the image, in the sense vertical/horizontal.
See the discussion on size setting.

=item Device

The type of device to use. The syntax of this is the one used by PGPLOT.

=item Hold

Hold the plot window so that subsequent plots can plot over existing plots.
This can be adjusted with the C<hold()> and C<release()> methods.

=item NXPanel

The number of panels in the X-direction

=item NYPanel

The number of panels in the Y-direction

=item Size

Yet another way to identify the plot window size -- this takes a scalar
or an array ref containing one, two, or three numbers.  One number gives
you a square window.  Two gives you a rectangular window C<(X,Y)>.  Three
lets you specify the unit compactly (e.g. C<< [<X>,<Y>,1] >> for inches,
C<< [<X>,<Y>,2] >> for mm) but is deprecated in favor of using the
C<Unit> option.
See the discussion on size setting.

=item Unit

The unit to use for size setting.  PGPLOT accepts inch, mm, or pixel.
The default unit is inches for historical reasons, but you can choose
millimeters or (God forbid) pixels as well.  String or numeric
specifications are OK (0=normalized, 1=inches, 2=mm, 3=pixels).
Normalized units make no sense here and are not accepted.  Ideally
someone will one day hook this into the CPAN units parser so you can
specify window size in rods or attoparsecs.

=item WindowName

The name to give to the window. No particular use is made of this at present.
It would be great if it was possible to change the title of the window frame.

=item WindowWidth

The width of the window in inches (or the specified Unit).  See the
discussion on size setting.

=item WindowXSize and WindowYSize

The width and height of the window in inches (or the specified Unit).  See
the discussion on size setting.

=back

An important point to note is that the default values of most options can be
specified by passing these to the constructor. All general options (common to
several functions) can be adjusted in such a way, but function specific
options can not be set in this way (this is a design limitation which is
unlikely to be changed).

Thus the following call will set up a window where the default axis colour
will be yellow and where plot lines normally have red colour and dashed
linestyle.

  $win = PDL::Graphics::PGPLOT::Window->new(Device => '/xs',
          AxisColour => 'Yellow', Colour => 'Red', LineStyle => 'Dashed');


Size setting: There are a gazillion ways to set window size, in
keeping with TIMTOWTDI.  In general you can get away with passing any
unique combination of an C<< <X> >> size, a C<< <Y> >>size,
and/or an aspect ratio.
In increasing order of precedence, the options are: (C<Units>,
C<AspectRatio>, C<WindowWidth>, C<< Window<X,Y>Size >>, C<Size>).

So if you specify an AspectRatio *and* an X and a Y coordinate, the
AspectRatio is ignored.  Likewise, if you specify Units and a
three-component Size, the Units option is ignored in favor of the
numeric unit in the Size.

If you don't specify enough information to set the size of the window,
you get the default pane size and shape for that device.

=head2 close

=for ref

Close a plot window

=for usage

  Usage: $win->close()

Close the current window. This does not necessarily mean that the
window is removed from your screen, but it does ensure that the
device is closed.

A message will be printed to STDOUT giving the name of the
file created if the plot was made to a hardcopy device and
C<$PDL::verbose> is true.

=head2 held

=for ref

Check if a window is on hold

=for usage

  $is_held = $win->held();

Function to check whether the window is held or not.


=head2 hold

=for ref

Hold the present window.

=for usage

 Usage: $win->hold()

Holds the present window so that subsequent plot commands overplots.


=head2 panel

=for ref

Switch to a different panel

=for usage

  $win->panel(<num>);

Move to a different panel on the plotting surface. Note that you will need
to erase it manually if that is what you require.

This routine currently does something you probably don't want, and hence is
deprecated for most use:  if you say

  $win->panel(1);
  $win->imag($image);

then $image will actually be displayed in panel B<2>.  That's because
the main plotting routines such as line and imag all advance the panel
when necessary.  Instead, it's better to use the Panel option within
plotting commands, if you want to set the panel explicitly.

=head2 release

=for ref

Release a plot window.

=for usage

   $win->release()

Release a plot window so that subsequent plot commands move to the next
panel or erase the plot and create a new plot.

=head2 erase

=for ref

Erase plot

=for usage

  $win->erase($opt);

Erase a plot area. This accepts the option C<Panel> or alternatively a number
or array reference which makes it possible to specify the panel to erase when
working with several panels.

=head2 Plotting functions

=head2 env

=for ref

Define a plot window, and put graphics on 'hold'

=for usage

 $win->env( $xmin, $xmax, $ymin, $ymax, [$justify, $axis] );
 $win->env( $xmin, $xmax, $ymin, $ymax, [$options] );

C<$xmin>, C<$xmax>, C<$ymin>, C<$ymax> are the plot boundaries.
C<$justify> is a boolean value (default is B<0>);
if true the axes scales will be the same (see C<justify>).
C<$axis> describes how the axes should be drawn (see
C<axis>) and defaults to B<0>.

If the second form is used, $justify and $axis can be set in the options
hash, for example:

 $win->env( 0, 100, 0, 50, {JUSTIFY => 1, AXIS => 'GRID',
			    CHARSIZE => 0.7} );

In addition the following options can also be set for C<env>:

=over

=item PlotPosition

The position of the plot on the page relative to the view surface in
normalised coordinates as an anonymous array. The array should contain
the lower and upper X-limits and then the lower and upper Y-limits. To
place two plots above each other with no space between them you could do

  $win->env(0, 1, 0, 1, {PlotPosition => [0.1, 0.5, 0.1, 0.5]});
  $win->env(5, 9, 0, 8, {PlotPosition => [0.1, 0.5, 0.5, 0.9]});

=item Axis, Justify, Border

See the description of general options for these options.

=item AxisColour

Set the colour of the coordinate axes.

=item XTitle, YTitle, Title, Font, CharSize

Axes titles and the font and size to print them.

=back

=head2 label_axes

=for ref

Label plot axes

=for usage

  $win->label_axes(<xtitle>, <ytitle>, <plot title>, $options);

Draw labels for each axis on a plot.

=head2 imag

=for ref

Display an image (uses C<pgimag()>/C<pggray()> as appropriate)

=for usage

 $win->imag ( $image,  [$min, $max, $transform], [$opt] )

NOTES

C<$transform> for image/cont etc. is used in the same way as the
C<TR()> array in the underlying PGPLOT FORTRAN routine but is,
fortunately, zero-offset. The L<transform()|/transform> routine can be used to
create this piddle.

If C<$image> is two-dimensional, you get a grey or pseudocolor image
using the scalar values at each X,Y point.  If C<$image> is
three-dimensional and the third dimension has order 3, then it is
treated as an RGB true-color image via L<rgbi|rgbi>.

There are several options related to scaling.  By default, the image
is scaled to fit the PGPLOT default viewport on the screen.  Scaling,
aspect ratio preservation, and 1:1 pixel mapping are available.  (1:1
pixel mapping is useful for avoiding display artifacts, but it's not
recommended for final output as it's not device-independent.)

Here's an additional complication: the "pixel" stuff refers not
(necessarily) to normal image pixels, but rather to I<transformed>
image pixels.  That is to say, if you feed in a transform matrix
via the C<TRANSFORM> option, the C<PIX>, C<SCALE>,
etc. options all refer to the
transformed coordinates and not physical image pixels.  That is a Good
Thing because it, e.g., lets you specify plate scales of your output
plots directly!  See fits_imag for an example application.  If you
do not feed in a transform matrix, then the identity matrix is applied
so that the scaling options refer to original data pixels.

To draw a colour bar (or wedge), either use the C<DrawWedge> option,
or the C<draw_wedge()> routine (once the image has been drawn).

Options recognised:

=over 3

=item ITF

the image transfer function applied to the pixel values.
It may be one of 'LINEAR', 'LOG', 'SQRT' (lower case is
acceptable). It defaults to 'LINEAR'.

=item MIN

Sets the minimum value to be used for calculation of the
color-table stretch.

=item MAX

Sets the maximum value for the same.

=item RANGE

A more compact way to specify MIN and MAX, as a list:
you can say "Range=>[0,10]" to scale the color table for
brightness values between 0 and 10 in the iamge data.

=item CRANGE

Image values between MIN and MAX are scaled to an
interval in normalized color domain space, on the
interval [0,1], before lookup in the window's color
table. CRANGE lets you use only a part of the color
table by specifying your own range -- e.g. if you
say "CRange=>[0.25,0.75]" then only the middle half
of the pseudocolor space will be used.  (See the
writeup on ctab().)

=item TRANSFORM

The PGPLOT transform 'matrix' as a 6x1 vector for display

=item DrawWedge

set to 1 to draw a colour bar (default is 0)

=item Wedge

see the draw_wedge() routine

=back

The following standard options influence this command:

 AXIS, BORDER, JUSTIFY, SCALE, PIX, PITCH, ALIGN, XRANGE, YRANGE

=for example

   To see an image with maximum size in the current window, but square
   pixels, say:
         $win->imag( $a, { PIX=>1 } );
   An alternative approach is to try:
         $win->imag( $a, { JUSTIFY=>1 } );
   To see the same image, scaled 1:1 with device pixels, say:
         $win->imag( $a, { SCALE=>1 } );
   To see an image made on a device with 1:2 pixel aspect ratio, with
   X pixels the same as original image pixels, say
         $win->imag( $a, { PIX=>0.5, SCALE=>2 } );
   To display an image at 100 dpi on any device, say:
         $win->imag( $a, { PITCH=>100 } );
   To display an image with 100 micron pixels, say:
         $win->imag( $a, { PITCH=>10, UNIT=>'mm' } );

=head2 imag1

=for ref

Display an image with correct aspect ratio

=for usage

 $win->imag1 ( $image, [$min, $max, $transform], [$opt] )

This is syntactic sugar for

  $win->imag( { PIX=>1, ALIGN=>'CC' } );

=head2 rgbi

=for ref

Display an RGB color image

The calling sequence is exactly like L</imag>, except that the input
image must have three dimensions: C<N x M x 3>.  The last dimension is the
(R,G,B) color value.  This routine requires B<pgplot 5.3devel> or later.
Calling rgbi explicitly is not necessary, as calling image with an
appropriately dimensioned RGB triplet makes it fall through to rgbi.

=head2 fits_imag

=for ref

Display a FITS image with correct axes

=for usage

  $win->fits_imag( image,  [$min, $max], [$opt] );

NOTES

=over 3

=item Titles:

Currently fits_imag also generates titles for you by default and appends the
FITS header scientific units if they're present.  So if you say

  $pdl->hdr->{CTYPE1} = "Flamziness";
  $pdl->hdr->{CUNIT1} = "milliBleems";
  $win->fits_imag($pdl);

then you get an X title of "Flamziness (milliBleems)".  But you can (of course)
override that by specifying the XTitle and YTitle switches:

  $win->fits_imag($pdl,{Xtitle=>"Arbitrary"});

will give you "Arbitrary" as an X axis title, regardless of what's in the
header.

=item Scaling and aspect ratio:

If CUNIT1 and CUNIT2 (or, if they're missing, CTYPE1 and CTYPE2)
agree, then the default pixel aspect ratio is 1 (in scientific units,
NOT in original pixels).  If they don't agree (as for a spectrum)
then the default pixel aspect ratio is adjusted automatically to
match the plot viewport and other options you've specified.

You can override the image scaling using the SCALE, PIX, or PITCH
options just as with L<the imag() method|/imag> -- but
those parameters refer to the scientific coordinate system rather than
to the pixel coordinate system (e.g. C<PITCH=E<gt>100> means "100 scientific units
per inch", and C<SCALE=E<gt>1> means "1 scientific unit per device pixel").  See
L<the imag() writeup|/imag> for more info on these
options.

The default value of the C<ALIGN> option is 'CC' -- centering the image
both vertically and horizontally.

=item Axis direction:

By default, fits_imag tries to guess which direction your axes are meant
to go (left-to-right or right-to-left) using the CDELT keywords:
if C<< CDELT >>
is negative, then rather than reflecting the image fits_imag will plot the
X axis so that the highest values are on the left.

This is the most convenient behavior for folks who use calibrated
(RA,DEC) images, but it is technically incorrect.  To force the direction,
use the DirAxis option.  Setting
C<< DirAxis=>1 >> (abbreviated C<< di=>1 >>)
will force the scientific axes to increase to the right, reversing the image
as necessary.

=item Color wedge:

By default fits_imag draws a color wedge on the right; you can explicitly
set the C<DrawWedge> option to 0 to avoid this.  Use the C<WTitle> option
to set the wedge title.


=item Alternate WCS coordinates:

The default behaviour is to use the primary/default WCS information
in the FITS header (i.e. the C<CRVAL1>,C<CRPIX1>,... keywords). The
Greisen et al. standard (L<http://fits.cv.nrao.edu/documents/wcs/wcs.html>)
allows alternative/additional mappings to be included in a header; these
are denoted by the letters C<A> to C<Z>. If you know that your image contains
such a mapping then you can use the C<WCS> option to select the appropriate
letter. For example, if you had read in a Chandra image created by the CIAO
software package then you can display the image in the C<physical>
coordinate system by saying:

  $win->fits_imag( $pdl, { wcs => 'p' } );

The identity transform is used if you select a mapping for which there is
no information in the header.
Please note that this support is B<experimental> and is not guaranteed
to work correctly; please see the documentation for the L<_FITS_tr|/_FITS_tr>
routine for more information.

=back



=head2 fits_rgbi

=for ref

Display an RGB FITS image with correct axes

=for usage

  $win->fits_rgbi( image, [$min,$max], [$opt] );

Works exactly like L<fits_imag|/fits_imag>, but the image must be in
(X,Y,RGB) form.  Only the first two axes of the FITS header are examined.

=head2 fits_cont

=for ref

Draw contours of an image, labelling the axes using the WCS information
in the FITS header of the image.

=for usage

  $win->fits_cont( image, [$contours, $transform, $misval], [$opt] )

Does the same thing for the L<cont|/cont> routine that
L<fits_imag|/fits_imag> does for the L<imag|/imag> routines.

=head2 draw_wedge

=for ref

Add a wedge (colour bar) to an image.

=for usage

 $win->draw_wedge( [$opt] )

Adds a wedge - shows the mapping between colour and value for a pixel - to
the current image.  This can also be achieved by setting C<DrawWedge> to 1
when calling the C<imag> routine.

The colour and font size are the same as used to draw the image axes
(although this will probably fail if you did it yourself).  To control the size
and location of the wedge, use the C<Wedge> option, giving it a hash reference
containing any of the following:

=over 4

=item Side

Which side of the image to draw the wedge: can be one of 'B', 'L', 'T', or
'R'. Default is B<'R'>.

=item Displacement

How far from the edge of the image should the wedge be drawn, in units of character
size. To draw within the image use a negative value. Default is B<1.5>.

=item Width

How wide should the wedge be, in units of character size.  Default is B<2>.

=item Label

A text label to be added to the wedge.  If set, it is probably worth
increasing the C<Width> value by about 1 to keep the text readable.
Default is B<''>.  This is equivalent to the C<WTitle> option to
L<imag|imag>, L<fits_imag|fits_imag>, and similar methods.

=item ForeGround (synonym Fg)

The pixel value corresponding to the "maximum" colour.  If C<undef>, uses the
value used by C<imag> (recommended choice).  Default is C<undef>.

=item BackGround (synonym Bg)

The pixel value corresponding to the "minimum" colour.  If C<undef>, uses the
value used by C<imag> (recommended choice).  Default is C<undef>.

=back

=for example

 $a = rvals(50,50);
 $win = PDL::Graphics::PGPLOT::Window->new();
 $win->imag( $a, { Justify => 1, ITF => 'sqrt' } );
 $win->draw_wedge( { Wedge => { Width => 4, Label => 'foo' } } );
 # although the following might be more sensible
 $win->imag( $a, { Justify => 1, ITF => 'sqrt', DrawWedge => 1,
     Wedge => { Width => 4, Label => 'foo'} } );

=head2 ctab

=for ref

Load an image colour table.

 Usage:

=for usage

   ctab ( $name, [$contrast, $brightness] ) # Builtin col table
   ctab ( $ctab, [$contrast, $brightness] ) # $ctab is Nx4 array
   ctab ( $levels, $red, $green, $blue, [$contrast, $brightness] )
   ctab ( '', $contrast, $brightness ) # use last color table

Note: See L<PDL::Graphics::LUT|PDL::Graphics::LUT> for access to a large
number of colour tables.

Notionally, all non-RGB images and vectors have their colors looked up
in the window's color table.  Colors in images and such are scaled to
a normalized pseudocolor domain on the line segment [0,1]; the color
table is a piecewise linear function that maps this one-dimensional
scale to the three-dimensional normalized RGB color space [0,1]^3.

You can specify specific indexed colors by appropriate use of the
(levels,red,green,blue) syntax -- but that is deprecated, since the actual
available number of colors can change depending on the output device.
(Someone needs to write a specific hardware-dependent lookup table interface).

See also L<imag|imag> for a description of how to use only part of the
color table for a particular image.

=head2 ctab_info

=for ref

Return information about the currently loaded color table

=head2 autolog

=for ref

Turn on automatic logarithmic scaling in C<line> and C<points>

=for usage

  Usage:  autolog([0|1]);

Setting the argument to 1 turns on automatic log scaling and setting it to
zero turns it off again. The function can be used in both the object
oriented and standard interface. To learn more, see the documentation for
the L<axis option|axis>.

=for example

   my $win = PDL::Graphics::PGPLOT::Window->new(dev=>'/xserve');
   my $x=sequence(10);
   my $y=$x*$x+1;

   $win->autolog(1);
   $win->line($x,$y, {Axis => 'LogY'});


=head2 line

=for ref

Plot vector as connected points

If the 'MISSING' option is specified, those points in the C<$y> vector
which are equal to the MISSING value are not plotted, but are skipped
over.  This allows one to quickly draw multiple lines with one call to
C<line>, for example to draw coastlines for maps.

=for usage

 Usage: line ( [$x,] $y, [$opt] )

The following standard options influence this command:

 AXIS, BORDER, COLO(U)R, LINESTYLE, LINEWIDTH, MISSING,
 JUSTIFY, SCALE, PITCH, PIX, ALIGN

=for example

 $x = sequence(10)/10.;
 $y = sin($x)**2;
 # Draw a red dot-dashed line
 line $x, $y, {COLOR => 'RED', LINESTYLE=>3};

=head2 lines

=for ref

Plot a list of vectors as discrete sets of connected points

This works much like L<line|line>, but for discrete sets of connected
points.  There are two ways to break lines: you can pass in x/y coordinates
just like in L<line|line>, but with an additional C<pen> piddle that
indicates whether the pen is up or down on the line segment following
each point (so you set it to zero at the end of each line segment you
want to draw);  or you can pass in an array ref containing a list
of single polylines to draw.

Happily, there's extra meaning packed into the C<pen> piddle: it
multiplies the COLO(U)R that you set, so if you feed in boolean
values you get what you expect -- but you can also feed in integer
or floating-point values to get multicolored lines.

Furthermore, the sign bit of C<pen> can be used to draw hairline segments:
if C<pen> is negative, then the segment is drawn as though it were
positive but with LineWidth and HardLW set to 1 (the minimum).

Equally happily, even if you are using the array ref mechanism
to break your polylines you can feed in an array ref of C<pen> values to
take advantage of the color functionality or further dice your polylines.

Note that, unlike L<line|line>, C<lines> has no no specify-$y-only
calling path.  That's because C<lines> is intended more for line art than for
plotting, so you always have to specify both $x and $y.

Infinite or bad values are ignored -- that is to say, if your vector
contains a non-finite point, that point breaks the vector just as if you
set pen=0 for both that point and the point before it.

=for usage

 Usage: $w->lines( $x, $y, [$pen], [$opt] );
        $w->lines( $xy, [$pen], [$opt] );
        $w->lines( \@xvects, \@yvects, [\@pen], [$opt] );
        $w->lines( \@xyvects, [\@pen], [$opt] );

The following standard options influence this command:
 AXIS, BORDER, COLO(U)R, LINESTYLE, LINEWIDTH, MISSING,
 JUSTIFY, SCALE, PITCH, PIX, ALIGN

CAVEAT:

Setting C<pen> elements to 0 prevents drawing altogether, so you
can't use that to draw in the background color.

=head2 points

=for ref

Plot vector as points

=for usage

 Usage: points ( [$x,] $y, [$symbol(s)], [$opt] )

Options recognised:

   SYMBOL - Either a piddle with the same dimensions as $x, containing
            the symbol associated to each point or a number specifying
            the symbol to use for every point, or a name specifying the
            symbol to use according to the following (recognised name in
	     capital letters):
             0 - SQUARE   1 - DOT     2 - PLUS     3 - ASTERISK
             4 - CIRCLE   5 - CROSS   7 - TRIANGLE 8 - EARTH
             9 - SUN     11 - DIAMOND 12- STAR
 PLOTLINE - If this is >0 a line will be drawn through the points.

The following standard options influence this command:

 AXIS, BORDER, CHARSIZE, COLOUR, LINESTYLE, LINEWIDTH,
 JUSTIFY, SCALE, PIX, PITCH, ALIGN

C<SymbolSize> allows adjusting the symbol size, it defaults to CharSize.

The C<ColorValues> option allows one to plot XYZ data with the
Z axis mapped to a color value.  For example:

 use PDL::Graphics::LUT;
 ctab(lut_data('idl5')); # set up color palette to 'idl5'
 points ($x, $y, {ColorValues => $z});

=for example

 $y = sequence(10)**2+random(10);
 # Plot blue stars with a solid line through:
 points $y, {PLOTLINE => 1, COLOUR => BLUE, symbol => STAR}; # case insensitive

=head2 errb

=for ref

Plot error bars (using C<pgerrb()>)

Usage:

=for usage

 errb ( $y, $yerrors, [$opt] )
 errb ( $x, $y, $yerrors, [$opt] )
 errb ( $x, $y, $xerrors, $yerrors, [$opt] )
 errb ( $x, $y, $xloerr, $xhierr, $yloerr, $yhierr, [$opt])

Any of the error bar parameters may be C<undef> to omit those error bars.

Options recognised:

   TERM - Length of terminals in multiples of the default length
 SYMBOL - Plot the datapoints using the symbol value given, either
          as name or number - see documentation for 'points'

The following standard options influence this command:

 AXIS, BORDER, CHARSIZE, COLOUR, LINESTYLE, LINEWIDTH,
 JUSTIFY, SCALE, PIX, PITCH, ALIGN

=for example

 $y = sequence(10)**2+random(10);
 $sigma=0.5*sqrt($y);
 errb $y, $sigma, {COLOUR => RED, SYMBOL => 18};

 # plot X bars only
 errb( $x, $y, $xerrors, undef );

 # plot negative going bars only
 errb( $x, $y, $xloerr, undef, $yloerr, undef );


=head2 cont

=for ref

Display image as contour map

=for usage

 Usage: cont ( $image,  [$contours, $transform, $misval], [$opt] )

Notes: C<$transform> for image/cont etc. is used in the same way as the
C<TR()> array in the underlying PGPLOT FORTRAN routine but is,
fortunately, zero-offset. The L<transform()|/transform> routine can be used to
create this piddle.

Options recognised:

    CONTOURS - A piddle with the contour levels
      FOLLOW - Follow the contour lines around (uses pgcont rather than
               pgcons) If this is set >0 the chosen linestyle will be
               ignored and solid line used for the positive contours
               and dashed line for the negative contours.
      LABELS - An array of strings with labels for each contour
 LABELCOLOUR - The colour of labels if different from the draw colour
               This will not interfere with the setting of draw colour
               using the colour keyword.
     MISSING - The value to ignore for contouring
   NCONTOURS - The number of contours wanted for automatical creation,
               overridden by CONTOURS
   TRANSFORM - The pixel-to-world coordinate transform vector

The following standard options influence this command:

 AXIS, BORDER, COLOUR, LINESTYLE, LINEWIDTH,
 JUSTIFY, SCALE, PIX, PITCH, ALIGN

=for example

 $x=sequence(10,10);
 $ncont = 4;
 $labels= ['COLD', 'COLDER', 'FREEZING', 'NORWAY']
 # This will give four blue contour lines labelled in red.
 cont $x, {NCONT => $ncont, LABELS => $labels, LABELCOLOR => RED,
           COLOR => BLUE}

=head2 bin

=for ref

Plot vector as histogram (e.g. C<bin(hist($data))>)

=for usage

 Usage: bin ( [$x,] $data )

Options recognised:

 CENTRE - (default=1) if true, the x values denote the centre of the
          bin otherwise they give the lower-edge (in x) of the bin
 CENTER - as CENTRE

The following standard options influence this command:

 AXIS, BORDER, COLOUR, JUSTIFY, LINESTYLE, LINEWIDTH

=head2 hi2d

=for ref

Plot image as 2d histogram (not very good IMHO...)

=for usage

 Usage: hi2d ( $image, [$x, $ioff, $bias], [$opt] )

Options recognised:

 IOFFSET - The offset for each array slice. >0 slants to the right
                                            <0 to the left.
    BIAS - The bias to shift each array slice up by.

The following standard options influence this command:

 AXIS, BORDER, JUSTIFY, SCALE, PIX, PITCH, ALIGN

Note that meddling with the C<ioffset> and C<bias> often will require you to
change the default plot range somewhat. It is also worth noting that if
you have TriD working you will probably be better off using
L<mesh3d|PDL::Graphics::TriD/mesh3d> or
a similar command - see the L<PDL::Graphics::TriD|PDL::Graphics::TriD>
module.

=for example

 $r=sequence(100)/50-1.0;
 $y=exp(-$r**2)*transpose(exp(-$r**2))
 hi2d $y, {IOFF => 1.5, BIAS => 0.07};

=head2 arrow

=for ref

Plot an arrow

=for usage

 Usage: arrow($x1, $y1, $x2, $y2, [, $opt]);

Plot an arrow from C<$x1, $y1> to C<$x2, $y2>. The arrow shape can be
set using the option C<Arrow>. See the documentation for general options
for details about this option (and the example below):

=for example

Example:

  arrow(0, 1, 1, 2, {Arrow => {FS => 1, Angle => 1, Vent => 0.3, Size => 5}});

which draws a broad, large arrow from (0, 1) to (1, 2).

=head2 rect

=for ref

Draw a non-rotated rectangle

Usage: rect ( $x1, $x2, $y1, $y2 )

Options recognised:

The following standard options influence this command:

 AXIS, BORDER, COLOUR, FILLTYPE, HATCHING, LINESTYLE,  LINEWIDTH
 JUSTIFY, SCALE, PIX, PITCH, ALIGN

=head2 poly

=for ref

Draw a polygon

=for usage

 Usage: poly ( $x, $y )

Options recognised:

The following standard options influence this command:

 AXIS, BORDER, COLOUR, FILLTYPE, HATCHING, LINESTYLE,  LINEWIDTH
 JUSTIFY, SCALE, PIX, PITCH, ALIGN

=for example

 # Fill with hatching in two different colours
 $x=sequence(10)/10;
 # First fill with cyan hatching
 poly $x, $x**2, {COLOR=>5, FILL=>3};
 hold;
 # Then do it over again with the hatching offset in phase:
 poly $x, $x**2, {COLOR=>6, FILL=>3, HATCH=>{PHASE=>0.5}};
 release;

=head2 circle

=for ref

Plot a circle on the display using the fill setting.

=for usage

 Usage: circle($x, $y, $radius [, $opt]);

All arguments can alternatively be given in the options hash using the
following options:

=over

=item XCenter and YCenter

The position of the center of the circle

=item Radius

The radius of the circle.

=back

=head2 ellipse

=for ref

Plot an ellipse, optionally using fill style.

=for usage

 Usage: ellipse($x, $y, $a, $b, $theta [, $opt]);

All arguments can alternatively be given in the options hash using the
following options:

=over

=item MajorAxis

The major axis of the ellipse - this must be defined or C<$a> must be given.

=item MinorAxis

The minor axis, like A this is required.

=item Theta (synonym Angle)

The orientation of the ellipse - defaults to 0.0. This is given in
radians.

=item XCenter and YCenter

The coordinates of the center of the ellipse. These must be specified or
C<$x> and C<$y> must be given.

=item NPoints

The number of points used to draw the ellipse. This defaults to 100 and
might need changing in the case of very large ellipses.

=back

The routine also recognises the same standard options as
accepted by L<poly|/poly>.

=head2 rectangle

=for ref

Draw a rectangle.

=for usage

 Usage: rectangle($xcenter, $ycenter, $xside, $yside, [, $angle, $opt]);

This routine draws a rectangle with the chosen fill style. Internally
it calls L<poly|/poly> which is somewhat slower than C<pgrect> but which
allows for rotated rectangles as well. The routine recognises the same
options as C<poly> and in addition the following:

=over

=item XCenter and YCenter

The position of the center of the rectangle. XCentre and YCentre are
valid synonyms.

=item XSide and YSide

The length of the X and Y sides. If only one is specified the
shape is taken to be square with that as the side-length, alternatively
the user can set Side

=item Side

The length of the sides of the rectangle (in this case a square) - syntactic
sugar for setting XSide and YSide identical. This is overridden by XSide
or YSide if any of those are set.

=item Angle (synonym Theta)

The angle at which the rectangle is to be drawn. This defaults to 0.0 and
is given in radians.


=back


=head2 vect

=for ref

Display 2 images as a vector field

=for usage

 Usage: vect ( $w, $a, $b, [$scale, $pos, $transform, $misval], { opt } );
        $w->vect($a,$b,[$scale,$pos,$transform,$misval], { opt });

Notes: C<$transform> for image/cont etc. is used in the same way as the
C<TR()> array in the underlying PGPLOT FORTRAN routine but is,
fortunately, zero-offset. The L<transform()|/transform> routine can be used to
create this piddle.

This routine will plot a vector field. C<$a> is the horizontal component
and C<$b> the vertical component.  The scale factor converts between
vector length units and scientific positional units.  You can set the
scale, position, etc. either by passing in parameters in the normal parameter
list or by passing in options.

Options recognised:

     SCALE - Set the scale factor for vector lengths.
       POS - Set the position of vectors.
             <0 - vector head at coordinate
             >0 - vector base at coordinate
             =0 - vector centered on the coordinate
 TRANSFORM - The pixel-to-world coordinate transform vector
   MISSING - Elements with this value are ignored.

The following standard options influence this command:

 ARROW, ARROWSIZE, AXIS, BORDER, CHARSIZE, COLOUR,
 LINESTYLE, LINEWIDTH,

=for example

 $a=rvals(11,11,{Centre=>[5,5]});
 $b=rvals(11,11,{Centre=>[0,0]});
 vect $a, $b, {COLOR=>YELLOW, ARROWSIZE=>0.5, LINESTYLE=>dashed};

=head2 fits_vect

=for ref

Display a pair of 2-D piddles as vectors, with FITS header interpretation

=for usage

 Usage: fits_vect ($a, $b, [$scale, $pos, $transform, $misval] )

C<fits_vect> is to L<vect|/vect> as L<fits_imag|/fits_imag> is to L<imag|imag>.

=head2 transform

=for ref

Create transform array for contour and image plotting

=for usage

 $win->transform([$xdim,$ydim], $options);

(For information on coordinate transforms, try L<PDL::Transform|PDL::Transform>.)
This function creates a transform array in the format required by the image
and contouring routines. You must call it with the dimensions of your image
as arguments or pass these as an anonymous hash - see the example below.

=over

=item Angle

The rotation angle of the transform, in radians.  Positive numbers rotate the
image clockwise on the screen.

=item ImageDimensions

The dimensions of the image the transform is required for. The dimensions
should be passed as a reference to an array.

=item Pixinc

The increment in output coordinate per pixel.

=item ImageCenter (or ImageCentre)

The centre of the image as an anonymous array B<or> as a scalar, in
scientific coordinates. In the latter case the x and y value for the
center will be set equal to this scalar. This is particularly useful
in the common case when the center is (0, 0).  (ImageCenter overrides
RefPos if both are specified).

=item RefPos (or ReferencePosition)

If you wish to set a pixel other than the image centre to a given
value, use this option. It should be supplied with a reference to an array
containing 2 2-element array references, e.g.

 RefPos => [ [ $xpix, $ypix ], [ $xplot, $yplot ] ]

This will label pixel C<($xpix,$ypix)> as being at position
C<($xplot,$yplot)>.  For example

 RefPos      => [ [100,74], [ 0, 0 ] ]

sets the scientific coordinate origin to be at the center of the (100,74)
pixel coordinate.  The pixel coordinates are pixel-centered, and start counting
from 0 (as all good pixel coordinates should).

=back

Example:

   $im = rvals(100, 100);
   $w = PDL::Graphics::PGPLOT::Window->new(Device => '/xs');
   $t = $w->transform(dims($im), {ImageCenter => 0,  Pixinc => 5});
   $w->imag($im, {Transform => $t});

=head2 tline

=for ref

Threaded line plotting

=for usage

 $win->tline($x, $y, $options);

This is a threaded interface to C<line>. This is convenient if you have
a 2D array and want to plot out every line in one go. The routine will
apply any options you apply in a "reasonable" way. In the sense that it
will loop over the options wrapping over if there are less options than
lines.

Example:

  $h={Colour => ['Red', '1', 4], Linestyle => ['Solid' ,'Dashed']};
  $tx=zeroes(100,5)->xlinvals(-5,5);
  $ty = $tx + $tx->yvals;
  $win->tline($tx, $ty, $h);

=head2 tpoints

=for ref

A threaded interface to points

=for usage

 Usage: tpoints($x, $y, $options);

This is a threaded interface to C<points>. This is convenient if you have
a 2D array and want to plot out every line in one go. The routine will
apply any options you apply in a "reasonable" way. In the sense that it
will loop over the options wrapping over if there are less options than
lines.

Example:

  $h={Colour => ['Red', '1', 4], Linestyle => ['Solid' ,'Dashed']};
  $tx=zeroes(100,5)->xlinvals(-5,5);
  $ty = $tx + $tx->yvals;
  tpoints($tx, $ty, $h);

=head2 tcircle

=for ref

A threaded interface to circle

=for usage

 Usage: tcircle($x, $y, $r, $options);

This is a threaded interface to C<circle>. This is convenient if you have
a list of circle centers and radii and want to draw every circle in one go.
The routine will apply any options you apply in a "reasonable" way,
in the sense that it will loop over the options wrapping over if there are less
options than circles.

Example:

 $x=sequence(5);
 $y=random(5);
 $r=sequence(5)/10 + 0.1;
 $h={justify => 1,Color => ['red','green','blue'], filltype => ['solid','outline','hatched','cross_hatched']};
 tcircle($x, $y, $r, $h);

Note that C<$x> and C<$y> must be the same size (>1D is OK, though meaningless as far as C<tcircle> is concerned). C<$r> can be the same size as C<$x> OR a 1-element piddle OR a single perl scalar.

=head2 Text routines

=head2 text

=for ref

Write text in a plot window at a specified position.

=for usage

 Usage: text ($text, $x, $y [, $opt])

Options recognised:

=over

=item C<ANGLE>

The angle in degrees between the baseline of the text and
the horisontal (increasing counter-clockwise). This defaults to 0.

=item C<JUSTIFICATION>

The justification of the text relative to the position specified. It
defaults to 0.0 which gives left-justified text. A value of 0.5 gives
centered text and a value of 1.0 gives right-justified text.

=item C<XPos>, C<YPos>, C<Text>

These gives alternative ways to specify the text and position.

=item C<BackgroundColour>

This sets the background colour for the text in case an opaque background
is desired. You can also use the synonyms C<Bg> and C<BackgroundColor>.

=back

The following standard options influence this command:

   COLOUR, CHARSIZE

=for example

  line sequence(10), sequence(10)**2;
  text 'A parabola', 3, 9, {Justification => 1, Angle=>atan2(6,1)};


=head2 legend

=for ref

Add a legend to a plot

=for usage

 Usage: legend($text, $x, $y, [, $width], $opt]);

This function adds a legend to an existing plot. The action is primarily
controlled by information in the options hash, and the basic idea is that
C<$x> and C<$y> determines the upper left hand corner of the box in which
the legend goes. If the width is specified either as an argument or as
an option in the option hash this is used to determine the optimal character
size to fit the text into part of this width (defaults to 0.5 - see the
description of C<TextFraction> below). The rest of the width is filled out with
either lines or symbols according to the content of the C<LineStyle>,
C<Symbol>, C<Colour> and C<LineWidth> options.

The local options recognised are as follows:

=over

=item C<Text>

An anonymous array of annotations, can also be specified directly.

=item C<XPos> and C<YPos>

The X and Y position of the upper left-hand corner of the text.

=item C<Width> and C<Height>

The width and/or height of each line (including symbol/line). This is
used to determine the character size. If any of these are set to 'Automatic'
the current character size will be used.

=item C<TextFraction>

The text and the symbol/line is set inside a box. C<TextFraction>
determines how much of this box should be devoted to text. This
defaults to 0.5. You can also use C<Fraction> as a synonym to this.

=item C<TextShift>

This option allows for fine control of the spacing between the text and the
start of the line/symbol. It is given in fractions of the total width of the
legend box. The default value is 0.1.

=item C<VertSpace> or C<VSpace>

By default the text lines are separated by one character height (in the sense that
if the separation were 0 then they would lie on top of each other). The
C<VertSpace> option allows you to increase (or decrease) this gap in units of
the character height; a value of 0.5 would add half a character height to the
gap between lines, and -0.5 would remove the same distance.
The default value is 0.

=item C<BackgroundColour>

This sets the background colour for the text in case an opaque background
is desired. You can also use the synonyms C<Bg> and C<BackgroundColor>.


=back

=for example

  line $x, $y, {Color => 'Red', LineStyle => 'Solid'};
  line $x2, $y2, {Color => 'Blue', 'LineStyle' => 'Dashed', LineWidth => 10};

  legend ['A red line', 'A blue line'], 5, 5,
      {LineStyle => ['Solid', 'Dashed'], Colour => ['Red', 'Blue']
       LineWidth => [undef, 10]}; # undef gives default.


=head2 Cursor routines

=head2 cursor

=for ref

Interactively read cursor positions.

=for usage

 Usage: ($x, $y, $ch, $xref, $yref) = cursor($opt)

This routine has no standard input parameters, but the type of cursor
can be set by setting the option C<Type> as a key in the anonymous hash
C<$opt>. The first three return values from the function are always
defined and gives the position selected by the user and the character
pressed.

Depending on the cursor type selected the last two arguments might also
be defined and these give a reference position. For instance if the cursor
is selected to be C<Rectangle> then the reference position gives one of
the corners of the rectangle and C<$x> and C<$y> the diagonally opposite
one.

Options recognised:

=over

=item XRef, YRef

The reference position to be used

=item Type

The type of cursor. This can be selected using a number between 0 and 7 as
in PGPLOT, or alternatively you can specify these as, C<Default> (0),
C<RadialLine> (1), C<Rectangle> (2), C<TwoHorizontalLines> (3),
C<TwoVerticalLines> (4), C<HorizontalLine> (5), C<VerticalLine> (6)
and C<CrossHair> (7) respectively. The default cursor is just the normal
mouse cursor.

For the C<RadialLine> you I<must> specify the reference point, whereas for
the C<Two(Vertical|Horizontal)Lines> cursor the X or Y reference point,
respectively, must be specified.

=back

=for example

To select a region on a plot, use the rectangle cursor:

  ($x, $y, $ch, $xref, $yref) = cursor({Type => 'Rectangle'});
  poly pdl($x, $xref, $xref, $x, $x), pdl($y, $y, $yref, $yref, $y);

To select a region of the X-axis:

  ($x1, $y1, $ch) = cursor({Type => 'VerticalLine'});
  ($x2, $y2, $ch) = cursor({Type => 'TwoVerticalLines', XRef => $x1});


=head1 Internal routines

=cut


#'

package PDL::Graphics::PGPLOT::Window;
require Exporter;

use PDL::Core qw/:Func :Internal/; # Grab the Core names
use PDL::Basic;
use PDL::Ufunc;
use PDL::Primitive;
use PDL::Types;
use PDL::Options;
use PDL::Graphics::State;
use PDL::Graphics::PGPLOTOptions qw(default_options);
use PDL::Slices;
use PDL::NiceSlice;
use SelfLoader;
use PGPLOT;

require DynaLoader;

@ISA = qw( Exporter SelfLoader DynaLoader );
@EXPORT = qw( pgwin );

bootstrap PDL::Graphics::PGPLOT::Window;
$PDL::Graphics::PGPLOT::RECORDING = 0; # By default recording is off..


####
# Helper routines to handle signal avoidance:
# cpgplot doesn't take well to being interrupted, so we mask out INT
# signals during most of the routines.  But we do want to handle
# those INTs, so we need a handler that marks 'em.
#
# You call catch_signals with no arguments.  INT and __DIE__ signals
# are sent to the signal_catcher, and released, not necessarily in
# the order they occurred, by release_signals.
#
# To avoid problems with nested &catch_signals and &release_signals calls,
# a variable keeps track of balancing the two.  Ideally, no signals would
# actually be released until you undo all of 'em -- but the code is meant
# to be forgiving, so the third caught INT signal in a row gets released,
# to be trapped in the usual way.
#
# catch_signals catches the __DIE__ pseudosignal, but barf() doesn't
# throw it -- so remember to release signals before barfing!
#
# The mechanism is a little over-powered for what we need -- but, hey,
# if you want to defer any other signal you can simply add it to the
# list in catch_signals.
#
# Don't try to parse arguments within catch_signals -- the omitted-() call
# is extra fast but doesn't set @_!
#
#  --CED 9-Aug-2002
####

=head2 signal_catcher, catch_signals, release_signals

To prevent pgplot from doing a fandango on core, we have to block interrupts
during PGPLOT calls.  Specifically, INT needs to get caught.  These internal
routines provide a mechanism for that.

You simply bracket any PGPLOT calls with C<&catch_signals> above and
C<&release_signals> below, and the signal_catcher will queue up any
signals (like INT -- the control-C interrupt) until the
C<&release_signals> call.

Any exit path from your hot code must include C<&release_signals>, or
interrupts could be deferred indefinitely (which would be a bug).
This includes calls to C<&barf> -- even barfs from someone you called!
So avoid calling out of the local module if possible, and use
release_and_barf() instead of barf() from within this module.

Perl 5.6.1 interrupt handling has a bug that this code tickles --
sometimes the re-emitted signals vanish into hyperspace.  Perl 5.8
seems NOT to have that problem.

=cut

my %sig_log;
my %sig_handlers;
my $sig_nest = 0;



sub signal_catcher {
  my($sig) = shift;

  if($sig_nest == 0) {
    $sig_nest = 1;
    print STDERR "PDL::Graphics::PGPLOT: Warning - who left the light on when they left?\n";
    &release_signals;
  }

  if($sig eq '__DIE__') {
    return unless defined $^S;  # Don't do anything during parsing of an eval
    $sig_nest = 1;              # Unwrap all nests when dying
    &release_signals;
    &{$SIG{__DIE__}}($sig) if defined($SIG{__DIE__});
    return;
  }

  # Print message if debugging is on or on multiple INT signals
  if($PDL::debug || ($sig_log{$sig} && ($sig eq 'INT'))) {
    if($sig_log{$sig}==1) {
      print STDERR "PDL::Graphics::PGPLOT: deferred $sig for PGPLOT; one more aborts operation\n";
    } else {
      print STDERR "PDL::Graphics::PGPLOT: deferred $sig signal for PGPLOT operation (l=$sig_nest)\n"
      }
  }

  # Handle multiple INT signals (user pressing ^C a bunch)
  if(defined($sig_log{$sig}) && ($sig_log{$sig}>1) && ($sig eq 'INT')) {
    print STDERR "Aborting PGPLOT operation".($PDL::debug ? " (may mess up future PGPLOT commands)\n" : "\n");
    $sig_nest = 1;
    &release_signals ;
  }
  else {
    $sig_log{$sig}++;
  }
}


sub catch_signals {
  my(@sigs) = ('INT');

  local($_);

  if($sig_nest == 0) {
    foreach $_(@sigs) {
      no warnings;  # mask out warning in case $SIG{$_} is undef or "".
      next if ($SIG{$_} == \&signal_catcher);
      $sig_handlers{$_}=$SIG{$_};
      $SIG{$_}=\&signal_catcher;
    }
  }

  $sig_nest++; # Keep track of nested calls.
}



sub release_signals {
  local($_);

  $sig_nest-- if($sig_nest > 0);
  return if($sig_nest > 0);

  # restore original handlers
  foreach $_(keys %sig_handlers) {
    no warnings; # allow assignment even if sig_handlers{$_} is undef
    $SIG{$_}=$sig_handlers{$_};
    delete $sig_handlers{$_};
  }

  # release signals
  foreach $_(keys %sig_log) {
    next unless $sig_log{$_};
    $sig_log{$_} = 0;
    kill $_,$$;
  }

}

sub release_and_barf {
  $sig_nest = 1;
  &release_signals;
  barf(@_);
}

#
# Note: Here the general and window creation specific options are read in
# from PGPLOTOptions. The $GeneralOptions variable is most importantly
# used in the new() routine to set the general options for the window.
#
# These are somewhat confusingly named perhaps. The WindowOptions are the
# options that affect window creation and setup such as width, shape etc.
# The GeneralOptions are options that affect all function calls in the package
# (or at least most) since it affects the default colour, character size etc.
# The problematic aspect here is the treatment of hardcopy settings. For
# historical reasons these are set in the WindowOptions variable but they
# should affect settings in the GeneralOptions variable...
# Ideally this should be re-coded, but to save some time I have instead opted
# for a patchy solution where they are specially treated in the new_window
# routine.
#
# Added 28/9/01 JB
# Delay the intialization of the window options so that it is possible
# to set the defaults in the .perldlrc file
my ($GeneralOptions, $WindowOptions) = (undef, undef);


my $PREVIOUS_DEVICE = undef;
my $PI = 4*atan2(1,1);
my $PREVIOUS_ENV = undef;

my $AUTOLOG = 0;


sub autolog {
  my $class = shift;
  my $ret;
  if (ref $class) {
    $ret = $class->{Autolog} || $AUTOLOG;
    $class->{Autolog} = shift if @_ > 0;
  } else {
    $ret = $AUTOLOG;
    $AUTOLOG = shift if @_ > 0;
  }
  return $ret;
}

sub checklog {
  my ($self,$x,$y) = @_;
  $x = $x->log10->float if defined $x && $self->autolog && $self->{Logx};
  $y = $y->log10->float if defined $y && $self->autolog && $self->{Logy};
  # print STDERR "Logx: ",$self->{Logx},"\n";
  # print STDERR "Logy: ",$self->{Logy},"\n";
  return ($x,$y);
}

sub pgwin {
    my(@a) = @_;
    # Since this is a convenience function, be convenient.  If only
    # one parameter is passed in, assume that it's a device.
    if(!$#a && !(ref $a[0])){
	$a[0] = "/$a[0]" unless($a[0] =~ m:/:);
	unshift(@a,'Dev')
	}

    # If two parameters are passed in, and the second one is a hash,
    # then the first one is a device.
    if(scalar(@a) == 2 && ref $a[1] eq 'HASH') {
      $a[0] = "/$a[0]" unless($a[0] =~ m:/:);
      $a[1]->{Dev} = $a[0];
      @a = %{$a[1]};
    }

    # Furthermore, if an odd number of parameters are passed in,
    # then the first one is a device and the rest is intended to
    # be a parameters hash...
    if(scalar(@a) % 2) {
      $a[0] = "/$a[0]" unless($a[0] =~ m/:/);
      unshift(@a,'Dev');
    }

    return PDL::Graphics::PGPLOT::Window->new(@a);
}

sub new {
  my $type = shift;

  # Set the default options!
  ($GeneralOptions, $WindowOptions) = default_options();
  # Turn off warnings for missing options...
  $GeneralOptions->warnonmissing(0);
  $WindowOptions->warnonmissing(0);

  # options are either given in a hash reference, or as a list
  # (which is converted to a hash reference to make the code easier)
  my $u_opt;
  if ( ref($_[0]) eq "HASH" ) { $u_opt = shift; }
  else                        { $u_opt = { @_ }; }
#  $u_opt={} unless defined($u_opt);

  my $opt = $WindowOptions->options($u_opt);
  $WindowOptions->full_options(0);
  my $user_options = $WindowOptions->current();
  $WindowOptions->full_options(1);

  # If the user set DEVICE then that overrides anything else...
  if (exists $user_options->{Device}) {
    $dev = $opt->{Device}
  } elsif (!defined($dev) || $dev eq "") {
    # Fall back on the default if first time or use $DEV otherwise..
    $dev = $PREVIOUS_DEVICE || $opt->{Device};
  }
  $PREVIOUS_DEVICE = $dev;

  &catch_signals;

  my $this_opt = PDL::Options->new($opt);
  my $t=$WindowOptions->translation();
  $this_opt->translation($t);
  my $s=$WindowOptions->synonyms();
  $this_opt->synonyms($s);
  $this_opt->warnonmissing(0);

  # This is the setup for the plot options - which also can
  # be set on a per-window basis by the user.
  my $popt = $GeneralOptions->options($u_opt);
  my $this_plotopt = PDL::Options->new($popt);
  $t = $GeneralOptions->translation();
  $this_plotopt->translation($t);
  $s = $GeneralOptions->synonyms();
  $this_plotopt->synonyms($s);
  $this_plotopt->warnonmissing(0);

  # Modified 7/4/02 JB to add CTAB as an aspect of the window.
  my $self = {
	      'Options'	      => $this_opt,
	      'PlotOptions'   => $this_plotopt,
	      'Hold'	      => $opt->{Hold}		  || 0,
	      'Name'	      => $opt->{WindowName}	  || '',
	      'ID'	      => undef,
	      'AspectRatio'   => $opt->{AspectRatio},
	      'WindowWidth'   => $opt->{WindowWidth},
	      'NX'	      => $opt->{NXPanel}	  || 1,
	      'NY'	      => $opt->{NYPanel}	  || 1,
	      'Device'	      => $opt->{Device}		  || $DEV,
	      'CurrentPanel'  => 0,
	      '_env_options'  => undef,
	      'State'         => undef,
	      'Recording'     => $opt->{Recording}        || $PDL::Graphics::PGPLOT::RECORDING,
	      'CTAB'          => undef, # The default colour table
	     };

  if (defined($self->{Options})) {
    # Turn off warnings about missing options
    $self->{Options}->warnonmissing(0);
  }

  bless $self, ref($type) || $type;

  $self->_open_new_window($opt);
  # This weird setup is required to create the object.

  # We always have to create a state variable to avoid undefined errors.
  $self->{State}=PDL::Graphics::State->new();

  &release_signals;
  return $self;

}

#
# Graphics windows should be closed when they go out of scope.
# Thanks to Doug Burke for pointing this out.
#
sub DESTROY {

  my $self=shift;

  $self->close() unless !defined($self->{ID});
}


=head2 _open_new_window

Open a new window. This sets the window ID, which is the one used when
accessing a window later using C<pgslct>. It also sets the window name
to something easily remembered if it has not been set before.

=cut

sub _open_new_window {
  my $self = shift;
  my(@parameters) = @_;

  &catch_signals;
  my $window_nr = pgopen($self->{Device});
  release_and_barf("Opening new window (pgopen) failed: $window_nr\n")
    if ($window_nr < 0);

  $self->{ID} = $window_nr;
  $self->{Name} = "Window$window_nr" if $self->{Name} eq "";

  $self->_setup_window(@parameters);

  &release_signals;
}


=head2 _setup_window

This routine sets up a new window with its shape and size. This is
also where the size options are actually parsed. These are then
forgotten (well, they are stored in $self->{Options}) and the
corresponding aspect ratio and window width is stored.  See the
discussion under new() for the logic.

Finally the subpanels are set up using C<pgsubp> and colours and linewidth
are adjusted according to whether we have a hardcopy device or not.

=cut

# bit: 2=>height; 1=>width; 0=>aspect
$DefaultWindowWidth = 6;
$DefaultWindowAspect=0.618;

# These are thunks to handle regularizing window values in _setup_window.
# Index is binary by validity of value.  0 = undefined (or 0), 1 = ok.
# Bit 0 = aspect, bit 1 = width, bit 2 = height.  Arguments in the same order.
# Return value is ($aspect, $height).
#
# If nothing is defined we try to grab the latest values from PGPLOT itself.
$__setup_subs = [
  sub { my($vs_x1,$vs_x2,$vs_y1,$vs_y2);                        # 0 (000)
	pgqvsz(1,$vs_x1,$vs_x2,$vs_y1,$vs_y2);
	my($w) = ($vs_x2 - $vs_x1) || $DefaultWindowWidth;
	return ( ((($vs_y2 - $vs_y1) / $w) || $DefaultWindowAspect),
	  $w
	  );
      },
  sub { ($_[0], $DefaultWindowWidth / ($_[0]<1 ? 1 : $_[0])); },# 1 (001)
  sub { ($DefaultWindowAspect, $_[1]); },                       # 2 (010)
  sub { @_; },                                                  # 3 (011)
  sub { ($DefaultWindowAspect, $_[2] / $_[0]); },               # 4 (100)
  sub { ($_[0], $_[2] / $_[0] ) },                              # 5 (101)
  sub { ($_[2] / $_[1], $_[1] ) },                              # 6 (110)
  sub { ($_[2] / $_[1], $_[1] ) } # use W and H; ignore Aspect  # 7 (111)
];


sub _setup_window {
  my $self = shift;
  my $opt = shift;
  # Get options as hash or as list
  if(ref $opt ne 'HASH') {
    $opt = {$opt,@_};
  }

  &catch_signals;

  my $unit = _parse_unit($opt->{Unit}) || 1;

  my $aspect = $opt->{AspectRatio};

  my($width,$height);

  $width  = $opt->{WindowXSize} || $opt->{WindowWidth};
  $height = $opt->{WindowYSize};

  if(defined $opt->{Size}) {
    if(ref $opt->{Size} eq 'ARRAY') {
      $width = $opt->{Size}->[0];
      $height = $opt->{Size}->[1] || $width;
      $unit = _parse_unit($opt->{Size}->[2]) if defined($opt->{Size}->[2]);
    } elsif(!(ref $opt->{Size})) {
      $width = $height = $opt->{Size};
    } else {
      warn("Size must be a scalar or an array ref if specified! Ignoring...\n");
    }
  }

  ($aspect,$width) = &{$__setup_subs->[ ((!!($aspect))   ) |
					((!!($width ))<<1) |
					((!!($height))<<2)
					]}($aspect,$width,$height);
  $self->{AspectRatio} = $aspect;
  $self->{WindowWidth} = $width;

  #
  # PGPLOT seems not to include full unit support in (e.g.) the pgpap
  # command -- so check here and convert mm->inches if necessary.
  # This is a real kludge that should be replaced with Real Units Conversion
  # at a future date.
  #
  if($unit==2) {         # mm -> inches
    $width /= 25.4;
    $height /= 25.4;
  } elsif($unit==3) {    # pixels -> inches.  Warning, not device independent!
                         # What a kludge -- get window width in both pixels
                         # and inches to figure out the scaling factor for
                         # pgpap (which requires inches).
    my($x0,$x1,$y0,$y1);
    pgqvp(3,$x0,$x1,$y0,$y1);
    my($pixwidth) = $x1 - $x0;
    pgqvp(1,$x0,$x1,$y0,$y1);
    my($inwidth) = $x1 - $x0;
    my($pixperinch) = $pixwidth / $inwidth;
    $width /= $pixperinch;
    $height /= $pixperinch;
  } elsif($unit ==0 || $unit > 3) {
    warn("Invalid unit specification for window size; defaulting to inches.\n");
  }

  # OK, we got a decent size.  Now call pgpap to set the size in the
  # device, and (for interactive devices!) pgpag to get the size we
  # want -- otherwise the window just hangs around looking lame at the
  # default size instead of the size the user asked for.  We also have
  # to turn PGASK off so the user doesn't get asked to hit "return".
  # Afterwards, we turn it back on because that's the default state.
  # (although it is set to 0 again pretty soon)
  #
  pgqinf('HARDCOPY',my $hcopy,my $len);
  pgpap($width, $aspect);
  if($hcopy eq 'NO') {
    pgask(0);
    pgpage();
    pgask(1);
  }

  # Now do the sub-division into panels.
  my $nx = $self->{NX};
  my $ny = $self->{NY};
  if ($nx < 0) {
    warn "We do not support the alternative numbering of panels of PGPLOT!\n";
    $nx = abs($nx);
    $self->{NX}=abs($self->{NX});
  }
  pgsubp($nx, $ny);

  # Setup the colours
  my $o = $self->{Options}->current();
  pgask(0);
  if ($hcopy eq "YES") {
    # This has changed to set the defaults instead.
    pgslw($o->{HardLW});
    pgsch($o->{HardCH});
    pgscf($o->{HardFont});
    # To change defaults you first need to read them out and then
    # adjust them and set them again
    my $temp_wo = $self->{PlotOptions}->defaults();
    $temp_wo->{Font}= $o->{HardFont};
    $temp_wo->{CharSize}= $o->{HardCH};
    $temp_wo->{LineWidth}= $o->{HardLW};
    $temp_wo->{Colour}= $o->{HardColour};
    $self->{PlotOptions}->defaults($temp_wo);
    my $temp_o=$self->{Options}->defaults();
    $temp_o->{AxisColour}=$o->{HardAxisColour};
    $temp_o->{CharSize}=$o->{HardCH};
    $self->{Options}->defaults($temp_o);
  } else {
    # Set the global properties as for the hardcopy device.
    pgsch($o->{CharSize});
    my $wo = $self->{PlotOptions}->defaults();
    pgscf($wo->{Font});
    pgslw($wo->{LineWidth});
  }

  my $wo = $self->{PlotOptions}->defaults();
  $self->_set_colour($wo->{Colour});
  pgask(0);

  &release_signals;
}

sub _set_defaults {		# Set up defaults

  # Now check if this is a hardcopy device, in which case we
  # set a variety of properties differently.
  my $self = shift;

}




=head2 _status

This routine checks PGPLOT's status for the window. It returns OPEN if
the window is open and CLOSED if it is closed.  (Windows can be closed
but still exist).

=cut

sub _status {

  &catch_signals;

  my $self=shift;
  $self->focus();
  my ($state, $len);
  pgqinf('STATE',$state,$len);

  &release_signals;
  return $state;

}

=head2 _reopen

This functions reopens a window. Since this is an internal function it does
not have a lot of error-checking. Make sure the device is closed I<before>
calling this routine.

There is an unfortunate problem which pops up viz. that the window name
cannot be changed at this point since we are offering that to the rest of
the world. That might be sensible, but it means that the window name will
not reflect the id of the window - use C<id()> for that (this is also why
we do not call C<open_new_window> )

=cut

sub _reopen {
  my @parameters = @_;
  my $self = shift;

  &catch_signals;
  my $window_nr = pgopen($self->{Device});

  release_and_barf("Opening new window (pgopen) failed: $window_nr\n")
    if ($window_nr < 0);

  $self->{ID} = $window_nr;

  $self->_setup_window(@parameters);

  &release_signals;
}


=head2 _advance_panel

This routine advances one plot panel, updating the CurrentPanel as well.
If the advance will proceed past the page the page will be erased. Also
note that when you advance one panel the hold value will be changed.

=cut

sub _advance_panel {
  &catch_signals;

  my $self = shift;

  my $new_panel = $self->{CurrentPanel}+1;
  if ($new_panel > ($self->{NX}*$self->{NY})) {
    # We are at the end of the page..
    $new_panel = 1;
    $self->clear_state();
    pgpage();
#    $self->{_env_set}=[];
  }

  $self->panel($new_panel);
  if ($self->held()) {
    $self->{Hold}=0;
    print "Graphic released (panel move)\n" if $PDL::verbose;
  }

  &release_signals;
}


=head2 _check_move_or_erase

This routine is a utility routine which checks if we need to move panel,
and if so will do this. It also checks if it is necessary to advance panels,
and whether they need to be erased.

=cut

sub _check_move_or_erase {
  my $self=shift;
  my ($panel, $erase)=@_;

  &catch_signals;

  my $sid; pgqid($sid);
  # Only perform a pgslct if necessary.
  pgslct($self->{ID}) unless $sid == $self->{ID};

  if (defined($panel)) {
    $self->panel($panel);
  } elsif (!$self->held()) {
    # If no hold has been set.
    $self->_advance_panel();
  }

  $self->erase() if $erase;

  &release_signals;
}


=head2 _thread_options

This function is a cludgy utility function that expands an options hash
to an array of hashes looping over options. This is mainly of use for
"threaded" interfaces to standard plotting routines.

=cut


sub _thread_options {
  my ($n, $h) = @_;

  # Loop over each option.
  my @hashes=(); # One for each option.
  my @keys = keys %$h;
  foreach my $k (@keys) {
    my @vals=();
    my $v=$h->{$k};
    $v = [$v] if ref($v) ne 'ARRAY';
    while ($#vals+1 < $n) {
      splice(@vals, @vals, 0, @$v);
    }
    for (my $i=0; $i<$n; $i++) {
      $hashes[$i]->{$k}=$vals[$i];
    }
  }
  return \@hashes;
}

############################
# Replay related functions #
############################

my $DEBUGSTATE = 0;

sub debug_state {
  $DEBUGSTATE = !$DEBUGSTATE;
}

sub replay {
  my $self = shift;
  my $state = shift || $self->{State};


  &catch_signals;


  if (!defined($state)) {
    die "A state object must be defined to play back commands!\n";
  }

  my @list = $state->get();


  if ($#list < 0) {
    # If there are no commands, then the user might have forgotten to
    # turn on recording, let us remind him/her

    warn "Replaying an empty state - did you turn on recording?\n";
    print "Hint: Put PDL::Graphics::PGPLOT::RECORDING=1 in your .perldlrc file\n"
  }

  foreach my $arg (@list) {
    my ($command, $commandname, $arg, $opt)=@$arg;
    &$command($self, @$arg, $opt);
  }

  &release_signals;
}


sub clear_state {
  my $self = shift;
  print "Clearing state!\n" if $DEBUGSTATE;
  $self->{State}->clear() if(defined($self) && defined($self->{State}));
}

sub turn_off_recording {
  my $self=shift;
  # Turning off does _NOT_ clear the state at the moment!
   $self->{Recording} =0;
  print "Turning off state!\n" if $DEBUGSTATE;
}
sub turn_on_recording {
  my $self=shift;
  # Previous calls are not recorded of course..
  print "Turning on state!\n" if $DEBUGSTATE;
  $self->{Recording} = 1;
  $self->{State}=PDL::Graphics::State->new() unless defined($self->{State});
}

sub _add_to_state {
  my $self=shift;
  my ($func, $arg, $opt)=@_;
  my ($pkg, $fname, $line, $funcname, $hasargs, $wantarray,
      $evaltext, $isrequire, $hints, $bitmask)=caller(1);
  # We only add if recording has been turned on.
  print "Adding to state ! $func, $arg, $opt\n" if $DEBUGSTATE;
  print "State = ".$self->{State}."\n" if $DEBUGSTATE;
  $self->{State}->add($func, $funcname, $arg, $opt) if $self->{Recording};
}

sub retrieve_state {
  my $self=shift;
  my $state_copy = $self->{State}->copy();
  print "Retriving state!\n" if $DEBUGSTATE;
  return $state_copy;
}


#####################################
# Window related "public" routines. #
#####################################

sub close {
  my $self=shift;
  # let the user know that we've created a file
  if ( $self->_status() eq 'OPEN' ) {
      my @info = $self->info( 'HARDCOPY', 'FILE' );
      print "Created: $info[1]\n" if $info[0] eq 'YES' and $PDL::verbose;
      pgclos();
  }
  $self->{ID}=undef;
  $self->clear_state();
}

=head2 options

Access the options used when I<originally> opening the window. At the moment
this is not updated when the window is changed later.

=cut

sub options {
  return $_[0]->{Options};
}

=head2 id

Access the window ID that PGPLOT uses for the present window.

=cut

sub id {
  return $_[0]->{ID};
}

=head2 device

This function returns the device type of the present window.

=cut

sub device {
  return $_[0]->{Device};
}

=head2 name

Accessor to set and examine the name of a window.

=cut

sub name {
  my $self=shift;
  if ($#_>=0) {
    $self->{Name}=$_[0];
  }
  return $self->{Name};
}

=head2 focus

Set focus for subsequent PGPLOT commands to this window.

=cut

sub focus {
  my $self=shift;
  return if !defined($self->{ID});

  &catch_signals;

  my $sid; pgqid($sid);
  # Only perform a pgslct if necessary.
  pgslct($self->{ID}) unless $sid == $self->{ID};

  &release_signals;
}


sub hold {
  my $self=shift;
  $self->{Hold}=1;
  $self->_add_to_state(\&hold);
  return $self->{Hold};
}


sub release {
  my $self=shift;
  $self->{Hold}=0;
  $self->_add_to_state(\&release);
  return $self->{Hold};
}


sub held {
  my $self = shift;
  return $self->{Hold};
}




=head2 info

=for ref

Get general information about the PGPLOT environment.

=for usage

 @ans = $self->info( @item );

The valid values of C<@item> are as below, where case is not
important:

  VERSION     - What PGPLOT version is in use.
  STATE       - The status of the output device, this is returns 'OPEN'.
                if the device is open and 'CLOSED' otherwise.
  USER        - The username of the owner of the spawning program.
  NOW         - The current date and time in the format
                'dd-MMM-yyyy hh:mm'. Most people are likely to use Perl
                functions instead.
  DEVICE    * - The current PGPLOT device or file, see also device().
  FILE      * - The filename for the current device.
  TYPE      * - And the device type for the current device.
  DEV/TYPE  * - This combines DEVICE and TYPE in a form that can be used
                as input to new.
  HARDCOPY  * - This is flag which is set to 'YES' if the current device is
                a hardcopy device and 'NO' otherwise.
  TERMINAL  * - This flag is set to 'YES' if the current device is the
                user's terminal and 'NO' otherwise.
  CURSOR    * - A flag ('YES' or 'NO') to inform whether the current device
                has a cursor.

Those items marced with a C<*> only return a valid answer if
the window is open.  A question mark (C<?>) is returned
if the item is not recognised or the information is not available.

=cut

#'

sub info {
    my $self = shift;
    my @inq;
    if ( wantarray() ) { @inq = @_; }
    else               { push @ing, $_[0]; }

    &catch_signals;

    $self->focus();
    my @ans;
    foreach my $inq ( @inq ) {
	my ( $state, $len );
	pgqinf( uc($inq), $state, $len );
	push @ans, $state;
    }
  &release_signals;
    return wantarray() ? @ans : $ans[0];
} # info()






sub panel {

  my $self = shift;

  $self->focus();
  my ($xpos, $ypos);
  if ($#_ == 1) {
    # We have gotten $x and $y..
    ($xpos, $ypos)=@_;
  } elsif ($#_ == 0 && ref($_[0]) eq 'ARRAY' ) {
    ($xpos, $ypos)=@{$_[0]};
  } elsif ($#_ == 0) {
    # We have been given a single number... This can be converted
    # to a X&Y position with a bit of calculation. The code is taken
    # from one2nd.
    release_and_barf("panel: Panel numbering starts at 1, not 0\n")
      if($_[0]<=0);

    my $i=$_[0]-1;	        # Offset code is 0-based (of course)
    $xpos = $i % $self->{NX};
    $i = long($i/$self->{NX});
    $ypos=$i % $self->{NY};
    $xpos++; $ypos++;		# Because PGPLOT starts at 1..
  } else {
    release_and_barf <<'EOD';
 Usage: panel($xpos, $ypos);   or
        panel([$xpos, $ypos]); or
        panel($index);
EOD
  }

  &catch_signals;

  # We do not subtract 1 from X because we would need to add it again to
  # have a 1-offset numbering scheme.
  $self->{CurrentPanel} = ($ypos-1)*$self->{NX}+($xpos);
  $self->_add_to_state(\&panel, $xpos, $ypos);
  pgpanl($xpos, $ypos);

  &release_signals;
}


{
  # To save space and time..
  my $erase_options = undef;
  sub erase {
    my $self = shift;

    # Parse options
    my $u_opt = shift;
    if (defined($u_opt) && ref($u_opt) eq 'HASH') {
      $erase_options = PDL::Options->new({Panel => undef}) if
	!defined($erase_options);
      my $o = $erase_options->options($u_opt);
      # Change panel if requested
      $self->panel($o->{Panel}) if defined($o->{Panel});
    } elsif (defined($u_opt)) {
      # The user has passed a number of reference to array..
      $self->panel($u_opt);
    }

    &catch_signals;

    $self->focus();
    # What should I do with the state here????
    pgeras();
    $self->_add_to_state(\&erase, [], $u_opt);
    # Remove hold.
    $self->{Hold}=0;
  }

  &release_signals;
}


##
## Utility functions
##

=head2 _extract_hash

This routine takes and array and returns the first hash reference found as
well as those elements that are I<not> hashes. Note the latter point because
all other references to hashes in the array will be lost.

=cut

sub _extract_hash {
  my @opt=@_;
  #
  # Given a list, returns a list of hash references and all the rest.
  #
  my $count=0;
  my $hashes=[];
  foreach (@opt) {
    push @$hashes, splice(@opt, $count, 1) if ref($_) eq 'HASH';
    $count++
  }
  return (\@opt, $$hashes[0]);
}

=head2 _parse_unit

Convert a unit string or number into a PGPLOT-certified length unit
specification, or return undef if it won't go.

=cut

@__unit_match = (
  qr/^((\s*0)|(n(orm(al(ized)?)?)?))\s*$/i,
  qr/^((\s*1)|(i(n(ch(es)?)?)?))\s*$/i,
  qr/^((\s*2)|(m(m|(illimeter))?s?))\s*$/i,
  qr/^((\s*3)|(p(ix(el)?)?s?))\s*$/i
);

sub _parse_unit {
  # I'm assuming returning undef when $u is undefined is a good thing to do (DJB; 06/28/02)
  my $u = shift || return undef;
  # print "parse_unit: got '$u'\n";
  for my $i (0..$#__unit_match) {
    return $i if($u =~ m/$__unit_match[$i]/);
  }
  return undef;
}

=head2 _parse_options

This is a convenience routine for parsing a set of options. It returns
both the full set of options and those that the user has set.

=cut

sub _parse_options {

  my $self=shift;
  my ($opt, $oin)=@_;

  ## Should do something sensible if $opt is no options object f.i.
  if (defined($oin) && ref($oin) ne 'HASH') {
    my ($package, $file, $line, $sub)=caller(1);
    release_and_barf "_parse_options called by $sub with non-hash options element!";
  } elsif (!defined($oin)) {
    my ($package, $file, $line, $sub)=caller(1);
    warn "_parse_options called by $sub without an options hash! - continuing\n";
    $oin = {};
  }
  my $o=$opt->options($oin);
  $opt->full_options(0);
  my $uo=$opt->current();
  $opt->full_options(1);

  $opt->clear_current();

  return ($o, $uo);

}


################################################################
#
#    GRAPHICS FUNCTIONS below!
#
################################################################

############ Local functions #################

=head2 _save_status

Saves the PGPLOT state so that changes to settings can be made and then
the present state restored by C<_restore_status>.

=cut

sub _save_status {
  my $self=shift;
  &catch_signals;
  pgsave if $self->_status() eq 'OPEN';
  &release_signals;
}

=head2 _restore_status

Restore the PGPLOT state. See L</_save_status>.

=cut

sub _restore_status {
  my $self=shift;
  &catch_signals;
  pgunsa if $self->_status() eq 'OPEN';
  &release_signals;
}



=head2 _checkarg

This routine checks and optionally alters the arguments given to it.

=cut

sub _checkarg {			# Check/alter arguments utility
  my $self = shift;
  my ($arg,$dims,$type,$nobarf) = @_;
  $type = $PDL_F unless defined $type;

  # nobarf added so the end-user can choose whether to die or not..x
  $nobarf = 0 unless defined($nobarf);
  my $ok = 1;

  $arg = topdl($arg);		# Make into a pdl
  $arg = convert($arg,$type) if $arg->get_datatype != $type;
  if (($arg->getndims > $dims)) {
    # Get the dimensions, find out which are == 1. If it helps
    # chuck these off and return trimmed piddle.
    my $n=nelem(which(pdl($arg->dims)==1));
    if (($arg->getndims-$n) > $dims) {
      $ok = 0;
      release_and_barf "Data is >".$dims."D" unless $nobarf;
    } else {
      my $count=0;      my $qq;
      my $s=join ',',
	map {if ($_ == 1 && $count<$arg->getndims-$dims) {$qq='(0)'; $count++}
	     else {
	       $qq= '';
	     }
	     ; $qq} $arg->dims;
      $arg=$arg->slice($s);
    }
  }
  $_[0] = $arg if $ok;	# Alter

  return $ok;
}

# a hack to store information in the object.
# Currently only used by imag() for storing information
# useful to draw_wedge().
#
# This routine needs changing:
#  . store values using PDL::Options, so you can update rather than overwrite
#  . associate the information with a particular window/panel/whatever
#  . clear information when plot erased (correct for current use by imag(),
#    but maybe not in more general cases?)
#
# The API is liable to change: you have been warned (Doug Burke)
#
sub _store {
    my $self = shift;
    release_and_barf 'Usage: _store( $self, $name, $item )' unless $#_ == 1;

    my $name   = shift;
    my $object = shift;

    # create storage space, if needed
    $self->{_horrible_storage_space} = {}
    unless defined $self->{_horrible_storage_space};

    # store data
    $self->{_horrible_storage_space}{$name} = $object;


} # sub: _store()

# retrieve information from storage space
# - same caveats as with _store()
#
sub _retrieve {
    my $self = shift;
    release_and_barf 'Usage: _retrieve( $self, $name )' unless $#_ == 0;

    my $name = shift;

    release_and_barf "Internal error: no storage space in object"
	unless exists $self->{_horrible_storage_space};

    if ( exists $self->{_horrible_storage_space}{$name} ) {
	return $self->{_horrible_storage_space}{$name};
    } else {
	return undef;
    }

} # sub: _retrieve()

##################
# Options parser #
##################



=head2 _set_colour

This is an internal routine that encapsulates all the nastiness of
setting colours depending on the different PGPLOT colour models (although
HLS is not supported).

The routine works in the following way:

=over 8

=item *

At initialisation of the plot device the work colour index is set
to 16. The work index is the index the routine will modify unless the
user has specified something else.

=item *

The routine should be used after standard interpretation and synonym
matching has been used. So if the colour is given as input is an integer
that colour index is used.

=item *

If the colour is a reference the routine checks whether it is an
C<ARRAY> or a C<PDL> reference. If it is not an error message is given.
If it is a C<PDL> reference it will be converted to an array ref.

=item *

If the array has four elements the first element is interpreted
as the colour index to modify and this overrules the setting for the
work index used internally. Otherwise the work index is used and incremented
until the maximum number of colours for the output device is reached
(as indicated by C<pgqcol>). Should you wish to change that you need
to read the PGPLOT documentation - it is somewhat device dependent.

=item *

When the array has been recognised the R,G and B colours of the
user-set index or work index is set using the C<pgscr> command and we
are finished.

=item *

If the input colour instead is a string we try to set the colour
using the PGPLOT routine C<pgscrn> with no other error-checking. This
should be ok,  as that routine returns a rather sensible error-message.

=back

=cut

{
  my $work_ci = 16;

  sub _set_colour {
    my $self = shift;
    my ($col, $is_textbg) = @_;
    $is_textbg = 0 if !defined($is_textbg);

    &catch_signals;

    # The colour index to use for user changes.
    # This is increased until the max of the colour map.
    # I don't know if this can change, but let's not take any
    # chances.
    my ($min_col, $max_col);
    pgqcol($min_col, $max_col);

    #
    # Extended treatment of colours - added 2/10/01 JB.
    #
    if (ref($col)) {
      if ((ref($col) eq 'PDL') or (ref($col) eq 'ARRAY')) {
	my @colvals = (ref($col) eq 'PDL' ? list($col) : @{$col});
	my ($r, $g, $b)=@colvals;
	my $index = $work_ci;
	if ($#colvals == 3) {
	  # This is a situation where the first element is interpreted
	  # as a PGPLOT colour index, otherwise we will use our own
	  # strategy to step through indices.
	  ($index, $r, $g, $b)=@colvals;
	} else {
  	  $work_ci += 1;
	  # NB this does not work on devices with < 16 colours.
	  $work_ci = 16 if $work_ci > $max_col;
	}
	pgscr($index, $r, $g, $b);

	if ($is_textbg) {
	  pgstbg($index);
	} else {
	  pgsci($index);
	}
      } else {
	warn "The colour option must be a number, string, array or PDL!\n";
      }
    } else {
      # Now check if this is a name that could be recognised by pgscrn.
      # To simplify the logic we first check if $col is a digit.
      if ($col =~ m/^\s*\d+\s*$/) {
	if ($is_textbg) {
	  pgstbg($col);
	} else {
	  pgsci($col);
	}
      } else {
	#
	# Ok, we either have an untranslated colour name or something
	# bogus - let PGPLOT deal with that!
	#
	my $ier;
	pgscrn($work_ci, $col, $ier);
	if ($is_textbg) {
	  pgstbg($work_ci);
	} else {
	  pgsci($work_ci);
	}
	$work_ci += 1;
	# NB this does not work on devices with < 16 colours.
	$work_ci = 16 if $work_ci > $max_col;
      }
    }

    &release_signals;

  }

}


=head2 _standard_options_parser

This internal routine is the default routine for parsing options. This
routine deals with a subset of options that most routines will accept.

=cut

sub _standard_options_parser {
  #
  # Parse the options and act on the values set.
  #
  my $self=shift;
  my ($o)=@_;

  &catch_signals;

  #
  # The input hash has to contain the options _set by the user_
  #
  $self->_set_colour($o->{Colour}) if (exists($o->{Colour}));
  pgsls($o->{LineStyle})  if exists($o->{LineStyle});
  pgslw($o->{LineWidth})  if exists($o->{LineWidth});
  pgscf($o->{Font})	  if exists($o->{Font});
  pgsch($o->{CharSize})	  if exists($o->{CharSize});
  pgsfs($o->{Fill})	  if exists($o->{Fill});
#  pgsch($o->{ArrowSize})  if exists($o->{ArrowSize});
  # Two new options..


  my $wo = $self->{PlotOptions}->defaults(); # Window defaults - for some routines below

  # We just need special treatment of the Arrow and Hatch options,
  # and they are complex for historical reasons...

  if (exists($o->{Arrow})) {
    #
    # Set the arrow. The size can be set either independently
    # using ARROWSIZE or in the hash
    #
    # Note the use of $wo to get the true default values here!
    my ($fs, $angle, $vent)=($wo->{Arrow}{FS}, $wo->{Arrow}{Angle},
			     $wo->{Arrow}{Vent});
    my $arrowsize = $o->{CharSize}; # Default to the character size..
    if (ref($o->{Arrow}) eq 'HASH') {
      while (my ($var, $value)=each %{$o->{Arrow}}) {
        # options are FS, ANGLE, VENT, SIZE
	# but SIZE may be ARROWSIZE [see ../PGPLOTOptions.pm]
	$fs=$value if $var =~ m/^F/i;
	$vent=$value if $var =~ m/^V/i;
	$angle=$value if $var =~ m/^AN/i;
        # not sure about how correct this is, but it stops 'use of undefined'
        # variable (for $angle) in pgsah() call below
	$arrowsize=$value if $var =~ m/^S/i or $var =~ m/^AR/i;
      }
    } else {
      $fs=$o->{Arrow}[0] if defined $o->{Arrow}[0];
      $angle=$o->{Arrow}[1] if defined $o->{Arrow}[1];
      $vent=$o->{Arrow}[2] if defined $o->{Arrow}[2];
      $arrowsize=$o->{Arrow}[3] if defined $o->{Arrow}[3];
    }
    pgsch($arrowsize) if defined($arrowsize);
    pgsah($fs, $angle, $vent);
  }

  if (exists($o->{Hatch})) {
    my $val = $o->{Hatch};
    if (!defined($val) || lc($val) eq 'default') {
      pgshs();			# Default values are either specified by HATCH=>undef or HATCH=>'default'
    } else {
      #
      # Can either be specified as numbers or as a hash...
      #
      # Note the use of $wo to get the true default values!!
      #
      my ($angle, $separation, $phase)=
	($wo->{Hatch}{Angle}, $wo->{Hatch}{Separation}, $wo->{Hatch}{Phase});

      if (ref($val) eq 'HASH') {
	while (my ($var, $value) = each %{$val}) {
	  $angle=$value if $var =~ m/^A/i;
	  $separation=$value if $var =~ m/^S/i;
	  $phase=$value if $var =~ m/^P/i;
	}
      } else {
	$angle=$$val[0] if defined($$val[0]);
	$separation=$$val[1] if defined($$val[1]);
	$phase=$$val[2] if defined($$val[2]);
      }
      if ($separation==0) {
	warn "The separation of hatch lines cannot be zero, the default of".
	  $wo->{Hatch}{Separation} . " is used!\n";
	$separation=$wo->{Hatch}{Separation};
      }
      pgshs($angle,$separation, $phase);
    }
  }

  &release_signals;
}

# initenv( $xmin, $xmax, $ymin, $ymax, $just, $axis )
# initenv( $xmin, $xmax, $ymin, $ymax, $just )
# initenv( $xmin, $xmax, $ymin, $ymax, \%opt )
#
# \%opt can be supplied but not be defined
# we parse the JUSTIFY, AXIS, and BORDER options here,
# rather than have a multitude of checks below
#


sub initenv{
  my $self = shift;		# Default box

  # We must check the status of the object, and if not ready it must
  # be re-opened...
  $self->_status();

  my ($in, $u_opt)=_extract_hash(@_);

  &catch_signals;

  my ($xmin, $xmax, $ymin, $ymax, $just, $axis)=@$in;
  $u_opt={} unless defined($u_opt);

  ##############################
  # If the user specifies $just or $axis these values will
  # override any options given.
  $u_opt->{Justify} = $just if defined($just);
  $u_opt->{Axis} = $axis if defined($axis);

  ##############################
  # Now parse the input options.
  my $o = $self->{Options}->options($u_opt); # Merge in user options...
  if ($self->autolog) {
    # Bug fix JB, 03/03/05 - logging noisy/failed when running with -w or strict.
    # Hence the extra check on the content of Axis
    if (ref($o->{Axis}) eq 'ARRAY') {
      $self->{Logx} = ($o->{Axis}[0] =~ /L/) ? 1 : 0;
      $self->{Logy} = ($o->{Axis}[1] =~ /L/) ? 1 : 0;
    } elsif (ref($o->{Axis})) {
      release_and_barf "The axis option must be an array ref or a scalar!\n";
    } else {
      $self->{Logx} = ($o->{Axis} == 10 || $o->{Axis} == 30) ? 1 : 0; #/BCLNST/) ? 1 : 0;
      $self->{Logy} = ($o->{Axis} == 20 || $o->{Axis} == 30) ? 1 : 0; #/BCLNST/) ? 1 : 0;
    }

    ($xmin,$xmax) = map {
      release_and_barf "plot boundaries not positive in logx-mode" if $_ <= 0;
      log($_)/log(10) } ($xmin,$xmax)
	if $self->{Logx};
    ($ymin,$ymax) = map {
      release_and_barf "plot boundaries not positive in logy-mode" if $_ <= 0;
      log($_)/log(10) } ($ymin,$ymax)
	if $self->{Logy};
  }

  # DJB 2003/12/01 - added some error checking for user errors like
  #   setting xmin==xmax. yeah, should really check abs(x1-x2)<tolerance ;)
  #
  release_and_barf "x axis has min==max" if $xmin == $xmax;
  release_and_barf "y axis has min==max" if $ymin == $ymax;

  if($self->held()) {
    $self->focus();
  } else {
    ##########
    # Save current colour and set the axis colours
    my ($col);
    pgqci($col);
    $self->_set_colour($o->{AxisColour});
    # Save current font size and set the axis character size.
    my ($chsz);
    pgqch($chsz);
    pgsch($o->{CharSize});

    if (ref($o->{Border}) eq 'HASH' || $o->{Border} != 0) {
      my $type  = "REL";
      my $delta = 0.05;
      if ( ref($o->{Border}) eq "HASH" ) {
	while (my ($bkey, $bval) = each %{$o->{Border}}) {
	  $bkey = uc($bkey);
	  if ($bkey =~ m/^TYP/) {
	    $type = uc $bval;
	  } elsif ($bkey =~ m/^VAL/) {
	    $delta = $bval;
	  }
	}				# while: (bkey,bval)
      }				# if: ref($val) eq "HASH"

      if ( $type =~ m/^REL/ ) {
	my $sep = ( $xmax - $xmin ) * $delta;
	$xmin -= $sep; $xmax += $sep;
	$sep = ( $ymax - $ymin ) * $delta;
	$ymin -= $sep; $ymax += $sep;
      } elsif ( $type =~ m/^ABS/ ) {
	$xmin -= $delta; $xmax += $delta;
	$ymin -= $delta; $ymax += $delta;
      } else {
	print "Warning: unknown BORDER/TYPE option '$type'.\n";
      }
    }

    ##############################
    # pgpage doesn't behave quite right in the multi-panel case.  Hence,
    # we call erase if there are multiple panels and pgpage if there is only
    # one.
    if (defined($o->{Erase}) && $o->{Erase}) {
      if ($self->{NX}*$self->{NY} > 1) {
	pgeras();
	$self->clear_state(); # Added to deal with new pages.
      } else {
	$self->clear_state(); # Added to deal with new pages.
	pgpage();
      }
    }

    ##########
    # Set up the viewport, and get its size in physical screen units.
    # This has to be done before the PIX/SCALE/PITCH stuff below in order
    # to make sure we can get physical dimensions of the viewport for scaling,
    # even though the JUSTIFY stuff redefines the viewport later.
    #
    if (!defined($o->{PlotPosition}) || $o->{PlotPosition} eq 'Default') {
      # Set standard viewport
      pgvstd();
    } else {
      release_and_barf "The PlotPosition must be given as an array reference!" unless
	ref($o->{PlotPosition}) eq 'ARRAY';
      my ($x0, $x1, $y0, $y1)=@{$o->{PlotPosition}};
      print "pgsvp($wx0,$wx1,$wy0,$wy1);\n" if($PDL::Graphics::PGPLOT::debug);
      pgsvp ($x0, $x1, $y0, $y1);
    }

    ##############################
    # Parse out scaling options.  The defaults for each value change
    # based on the others (e.g. specifying "SCALE" and no unit
    # gives pixels; but specifying "PITCH" and no unit gives dpi).
    #
    my($pix,$pitch,$unit);

    ($pix,$pitch,$unit) = (1,1.0/$o->{'Scale'},3)
      if($o->{'Scale'});

    ($pix,$pitch,$unit) = (1,$o->{'Pitch'},1)
      if($o->{'Pitch'});

    if(defined $o->{'Unit'}) {
      $unit = _parse_unit($o->{'Unit'});
      release_and_barf("Unknown unit '$o->{'Unit'}'\n")
	unless(defined $unit);
    }

    $unit = 1 unless defined($unit); # Default to inch (any phys. unit will do)

    ##############################
    # Get size of viewport in physical screen units
    my ($x0,$x1,$y0,$y1);
    pgqvp($unit,$x0,$x1,$y0,$y1);

    # Pixel aspect ratio is always overridden by the pix option
    $pix = $o->{'Justify'} if $o->{'Justify'};     # Only override if nonzero!
    $pix = $o->{'Pix'}     if defined $o->{'Pix'}; # Override if set.

    ###
    # Figure out the stretched pitch, if it isn't set.
    #
    my $have_pitch_and_pix = (defined($pix) & defined($pitch));

    unless(defined $pitch) {
	my $p = pdl( ($xmax-$xmin) / ($x1-$x0),
		     ($ymax-$ymin) / ($y1-$y0) * (defined($pix)?$pix:0));
	$pitch = $p->abs->max;
    }

    $pix = abs(($y1 - $y0) / ($ymax - $ymin)) * $pitch
      unless defined($pix);

    ##########
    # Figure out the actual data coordinate corners of the screen, and/or
    # tweak the screen to match the data coordinate corners.  This is important
    # because the PIX/SCALE/PITCH options set the scaling explicitly, and
    # the JUSTIFY option requires changing the viewport.
    #

    if($o->{Justify}) {
      ##########
      # Justify case

      ###
      # Work out the boundaries of the data in viewport space, given the
      # pitch and requested pixel aspect ratio.  This is complicated a
      # little by the need to specify the viewport in surface normalized
      # coordinates: we have to retrieve surface normalized coords to tweak.

      my($ox0,$ox1,$oy0,$oy1);
      pgqvp(0,$ox0,$ox1,$oy0,$oy1); # Get surface normalized dims of current vp

      my($wxs, $wys) = ( ($ox1-$ox0) / ($x1-$x0) ,  ($oy1-$oy0) / ($y1-$y0) );

      local($_) = $o->{Align} || "CC";
      my($wx0,$wx1,$wy0,$wy1);

      my($xrange) = abs(($xmax-$xmin) * $wxs / $pitch );
      ($wx0,$wx1) =
	(m/L/i) ? ( $ox0, $ox0  +  $xrange ) :
	(m/R/i) ? ( $ox1  -  $xrange, $ox1 ) :
	  (0.5 * ( $ox0 + $ox1 - $xrange ), 0.5 * ( $ox0 + $ox1 + $xrange ));

      my($yrange) = abs(($ymax-$ymin) * $wys * $pix / $pitch );
      ($wy0,$wy1) =
	(m/B/i) ? ( $oy0, $oy0 + $yrange ) :
	(m/T/i) ? ( $oy1 - $yrange, $oy1 ) :
           (0.5 * ( $oy0 + $oy1 - $yrange ), 0.5 * ( $oy0 + $oy1 + $yrange ));

      pgsvp(minmax(pdl($wx0,$wx1)),minmax(pdl($wy0,$wy1)));

      pgswin($xmin,$xmax,$ymin,$ymax);

    } elsif($have_pitch_and_pix) {

      ##########
      # Non-justify case with specified pitch and pixel aspect.

      my($xx0,$xx1,$yy0,$yy1); # These get the final data coords

      ###
      # Work out the boundaries of the viewport in data space, given the
      # pitch and requested pixel aspect ratio.
      local($_) = $o->{Align} || "BL";

      ($xx0,$xx1) =
	(m/L/i) ? ($xmin, $xmin+($x1-$x0)*$pitch) :
	(m/R/i) ? ($xmax-($x1-$x0)*$pitch, $xmax) :
	      (0.5*($xmin+$xmax - ($x1-$x0)*$pitch),
	       0.5*($xmin+$xmax + ($x1-$x0)*$pitch));

      ($yy0,$yy1) =
	(m/B/i) ? ($ymin, $ymin+($y1-$y0)*$pitch/$pix) :
	(m/T/i) ? ($ymax-($y1-$y0)*$pitch/$pix, $ymax) :
   	      (0.5*($ymin+$ymax - ($y1-$y0)*$pitch/$pix),
	       0.5*($ymin+$ymax + ($y1-$y0)*$pitch/$pix));

      #
      # Sort out the direction that each axis runs...
      #
      my ( $dax, $day );
      unless(defined $o->{DirAxis}) {
	($dax,$day) = (0,0);
      } elsif( ! ref $o->{DirAxis} ) {
	$dax=$day=$o->{DirAxis};
      } elsif( ref $o->{DirAxis} eq 'ARRAY' ) {
	($dax,$day) = @{$o->{DirAxis}};
      } else {
	release_and_barf "DirAxis option must be a scalar or array\n";
      }

      ##print "dax=$dax; day=$day\n";
      ( $xx0, $xx1 ) = ( $xx1, $xx0 )
	if (  ( $dax==0   and   ($xmin-$xmax)*($xx0-$xx1)<0 )
	      or ( $dax < 0 )
	      );

      ( $yy0, $yy1 ) = ( $yy1, $yy0 )
	if (  ( $day==0   and   ($ymin-$ymax)*($yy0-$yy1)<0 )
	      or ( $day < 0 )
	      );

      pgswin($xx0, $xx1, $yy0, $yy1);

  } else {
      ###
      # Simplest case -- just do what the user originally said.
      #
      pgswin($xmin,$xmax,$ymin,$ymax);

  }

    if (ref($o->{Axis}) eq 'ARRAY') {
      print "found array ref axis option...\n" if($PDL::Graphics::PGPLOT::debug);
      pgtbox($o->{Axis}[0], 0.0, 0, $o->{Axis}[1], 0.0, 0);
    } else {
      pgtbox($o->{Axis}, 0.0, 0, $o->{Axis}, 0.0, 0);
    }

    $self->_set_env_options($xmin, $xmax, $ymin, $ymax, $o);
    $self->label_axes($u_opt->{XTitle}, $u_opt->{YTitle}, $u_opt->{Title},
		      $u_opt);

    # restore settings
    $self->_set_colour($col);
    pgsch($chsz);

  } # end of not-held case

  &release_signals;

  1;
}

# This is a tidy little routine to set the env options and update the global
# variable.
sub _set_env_options {
  my $self=shift;
  my @opt=@_;

  $self->{_env_options} = [@opt];
  $PREVIOUS_ENV = [@opt];
}

sub redraw_axes {
  my $self = shift;

  &catch_signals;

  my $o;
  if (defined($self->{_env_options})) {
    # Use the previous settings for the plot box.
    my $e = $self->{_env_options};
    $o=$$e[4];
  } else {
    $o=$self->{Options}->defaults();
  }
  my $col;
  pgqci($col);
  $self->_set_colour($o->{AxisColour});
  my $chsz;
  pgqch($chsz);
  pgsch($o->{CharSize});
  my $axval = $o->{Axis};	# Using the last for this window...
  $axval = 0 unless defined $axval; # safety check
  unless ( $self->{Hold} ) {
    if ( ref($axval) ) {
      pgtbox($$axval[0],0,0,$$axval[1],0,0);
    } else {
      pgtbox($axval,0,0,$axval,0,0);
    }
  }
  $self->_set_colour($col);
  pgsch($chsz);

  $self->_add_to_state(\&redraw_axes);

  &release_signals;
}


=head2 _image_xyrange

Given a PGPLOT tr matrix and an image size, calculate the
data world coordinates over which the image ranges.  This is
used in L<imag|imag> and L<cont|cont>.  It keeps track of the
required half-pixel offset to display images properly -- eg
feeding in no tr matrix at all, nx=20, and ny=20 will
will return (-0.5,19.5,-0.5,19.5).  It also checks the options
hash for XRange/YRange specifications and, if they are present, it
overrides the appropriate output with the exact ranges in those fields.

=cut

sub _image_xyrange {
  my($tr,$nx,$ny,$opt) = @_;

  # Set identity $tr if no $tr is passed in.  This looks funny
  # because it's designed for use with evil Fortran coordinates.
  if(!defined($tr)) {
    $tr = float [-1,1,0,-1,0,1];
  }


  ##############################
  ## Because the transform is an inhomogeneous scale-and-rotate,
  ## the limiting points are always the corners of the original
  ## physical data plane after transformation.  We just transform
  ## the four corners of the data (in evil homogeneous FORTRAN
  ## origin-at-1 coordinates) and find the minimum and maximum
  ## X and Y values of 'em all.

  my @xvals;
  if(ref $opt eq 'HASH' and defined $opt->{XRange}) {
    die "_image_xyrange: if XRange is specified it must be an array ref\n"
      if(ref $opt->{XRange} ne 'ARRAY');
    @xvals = @{$opt->{XRange}};
  } else {
    @xvals = ($tr->(0:2)*pdl[
			         [1, 0.5, 0.5],
			         [1, 0.5, $nx+0.5],
			         [1, $nx+0.5, 0.5],
			         [1, $nx+0.5, $nx+0.5]
			       ])->sumover->minmax;
  }

  my @yvals;
  if(ref $opt eq 'HASH' and defined $opt->{YRange}) {
    die "_image_xyrange: if YRange is specified it must be an array ref\n"
      if(ref $opt->{YRange} ne 'ARRAY');
    @yvals = @{$opt->{YRange}};
  } else {
    @yvals = ($tr->(3:5)*pdl[
				     [1, 0.5, 0.5],
				     [1, 0.5, $ny+0.5],
				     [1, $ny+0.5, 0.5],
				     [1, $ny+0.5, $ny+0.5]
			     ])->sumover->minmax;
  }

  if ( $tr->at(1) < 0 ) { @xvals = ( $xvals[1], $xvals[0] ); }
  if ( $tr->at(5) < 0 ) { @yvals = ( $yvals[1], $yvals[0] ); }

  return (@xvals,@yvals);
}


=head2 _FITS_tr

Given a FITS image, return the PGPLOT transformation matrix to convert
pixel coordinates to scientific coordinates.   Used by
L<fits_imag|/fits_imag>, L<fits_rgbi|/fits_rgbi>, and
L<fits_cont|/fits_cont>, but may come in handy for other methods.

=for example

  my $tr = _FITS_tr( $win, $img );
  my $tr = _FITS_tr( $win, $img, $opts );

The return value (C<$tr> in the examples above) is the same as
returned by the L<transform()|/transform> routine, with values
set up to convert the pixel to scientific coordinate values for the
two-dimensional image C<$img>. The C<$opts> argument is optional
and should be a HASH reference; currently it only understands
one key (any others are ignored):

  WCS => undef (default), "", or "A" to "Z"

Both the key name and value are case insensitive. If left as C<undef>
or C<""> then the primary coordinate mapping from the header is used, otherwise
use the additional WCS mapping given by the appropriate letter.
We make B<no> checks that the given mapping is available; the routine
falls back to the unit mapping if the specified system is not available.

The WCS option has only been tested on images from the Chandra X-ray satellite
(L<http://chandra.harvard.edu/>) created by the CIAO software
package (L<http://cxc.harvard.edu/ciao/>), for which you should
set C<WCS =E<gt> "P"> to use the C<PHYSICAL> coordinate system.

See L<http://fits.cv.nrao.edu/documents/wcs/wcs.html> for further
information on the Representation of World Coordinate Systems in FITS.

=cut

{
    my $_FITS_tr_opt = undef;

    sub _FITS_tr {
        my $pane = shift;
	my $pdl  = shift;
	my $opts = shift || {};

	$_FITS_tr_opt = PDL::Options->new( { WCS => undef } )
	    unless defined $_FITS_tr_opt;
	my $user_opts = $_FITS_tr_opt->options( $opts );

	# Can either be sent a piddle or a hash reference for the header
	# information
	#
	my $isapdl = UNIVERSAL::isa($pdl,'PDL');
	my $hdr = $isapdl ? $pdl->hdr() : $pdl->hdr;

	print STDERR
	    "Warning: null FITS header in _FITS_tr (do you need to set hdrcpy?)\n"
	    unless (scalar(keys %$hdr) || (!$PDL::debug));

	my ( $cdelt1, $cpix1, $cval1, $n1 );
	my ( $cdelt2, $cpix2, $cval2, $n2 );
	my $angle;

	# what WCS system to use? Not sure how well we are following the
	# Greisen et al  proposal/standard here.
	#
	my $id = "";
	if ( defined $$user_opts{WCS} ) {
	    $id = uc( $$user_opts{WCS} );
	    die "WCS option must either be 'undef' or A-Z, not $id\n"
		unless $id =~ /^[A-Z]?$/;
	}
	print "Using the WCS '$id' mapping (if it exists)\n"
	    if $PDL::verbose and $id ne "";

	{
	    # don't complain about missing fields in fits headers
	    no warnings;

	    if ( $isapdl ) {
		( $n1, $n2 ) = $pdl->dims;
	    } else {
		$n1 = $hdr->{NAXIS1};
		$n2 = $hdr->{NAXIS2};
	    }

	    $cdelt1 = $hdr->{"CDELT1$id"} || 1.0;
	    $cpix1  = $hdr->{"CRPIX1$id"} || 1;
	    $cval1  = $hdr->{"CRVAL1$id"} || 0.0;

	    $cdelt2 = $hdr->{"CDELT2$id"} || 1.0;
	    $cpix2  = $hdr->{"CRPIX2$id"} || 1;
	    $cval2  = $hdr->{"CRVAL2$id"} || 0.0;

	    # changed Jan 14 2004 DJB - previously used CROTA
	    # keyword but that is not in the WCS standard
	    # - I hope this doesn't break things
	    # -- This broke a few things because CROTA is a pseudostandard
	    #    in the solar physics community.  I added a fallback to
	    #    CROTA in case CROTA2 doesn't exist. --CED
	    # 13-Apr-2010: changed sign of CROTA2 to match update to PDL::Transform in 2.4.3 --CED
	    $angle  = - ( (defined $hdr->{"CROTA2$id"}) ? $hdr->{"CROTA2$id"} :
			(defined $hdr->{"CROTA"}) ? $hdr->{"CROTA"} : 0)   *
		3.14159265358979323846264338/180;

	} # no warnings;

	#
	# Here's what we would do if PGPLOT worked as advertised...
	#
	return transform( $pane, {
	    ImageDimensions => [ $n1, $n2 ],
	    Angle  => $angle,
	    Pixinc => [ $cdelt1, $cdelt2 ],
	    RefPos => [ [$cpix1-1, $cpix2-1], [$cval1,$cval2] ]
	    } );
	#
	# Here's a failed attempt to compensate for the PGPLOT-induced jitter
	# (look closely at the "demo transform" rotating screens and you'll
	# see a small movement...)
	#
	# $offset = sqrt(0.5)* max abs cos ( $angle + pdl(-1,1)*0.25*3.14159 );
	# return transform( $pane, {
	#    ImageDimensions => [ $n1, $n2 ],
	#    Angle  => $angle,
	#    Pixinc => [ $cdelt1, $cdelt2 ],
	#    RefPos => [ [$cpix1-1-$offset, $cpix2-1-$offset], [$cval1,$cval2] ]
	#    } );


    } # sub: _FITS_tr

} # "closure" around _FITS_tr

sub label_axes {
  # print "label_axes: got ",join(",",@_),"\n";
  my $self = shift;
  my ($in, $opt)=_extract_hash(@_);

  &catch_signals;

  # :STATE RELATED:
  # THIS WILL PROBABLY NOT WORK as label_axes can be called both by
  # the user directly and by env... Let's see.
  $self->_add_to_state(\&label_axes, $in, $opt);

  release_and_barf 'Usage: label_axes( [$xtitle, $ytitle, $title], [$opt])' if $#$in > 3;

  my ($xtitle, $ytitle, $title)=@$in;

  $opt = {} if !defined($opt); # For safety.

  # Now the titles are set per plot so we use the general options to
  # parse the options (if they were set per window we would use
  # $self->{Options}
  my ($o, $u_opt) = $self->_parse_options($self->{PlotOptions}, $opt);

  # Added 25/8/01 JB to check whether label_axes is called before env..
  # This is not fool-proof though... And it will give a warning if the
  # user creates her/his env box outside of this package.
  warn "label_axes called before env - weird results might occur!\n" unless
    defined($self->{_env_options});

  $self->_save_status();
  $self->_standard_options_parser($u_opt);
  $o->{Title}=$title if defined($title);
  $o->{XTitle}=$xtitle if defined($xtitle);
  $o->{YTitle}=$ytitle if defined($ytitle);

  # what width do we use?
  # - things are somewhat confused since we have
  #   LineWidth and TextWidth (a recent addition)
  #   and LineWidth is set by _setup_window() - so
  #   _standard_options_parser() uses it - but
  #   TextWidth isn't.
  #
  # so for now we over-ride the _standard_options_parser
  # setting if TextWidth exists
  # [DJB 2002 Aug 08]
  my $old_lw;
  if ( defined($o->{TextWidth}) ) {
      pgqlw($old_lw);
      pgslw($o->{TextWidth});
  }

  # pglab by default goes too far from the plot!  If NYPanels > 1
  # then the bottom label of a higher plot tends to squash the plot
  # title for the plot below it.   To remedy this problem I've
  # replaced the pglab call with a set of calls to pgmtxt, cribbed
  # from the pglab.f file.  The parameters are shrunk inward if NYPanel > 1
  # or if the option "TightLabels" is set.  You can also explicitly set
  # it to 0 to get the original broken  behavior.  [CED 2002 Aug 29]

  $label_params = [ [2.0,  3.2, 2.2], # default
		    [1.0, 2.7, 2.2], # tightened
		    ]
		      unless defined($label_params);

  my($p) = $label_params->[ ( ($self->{NY} > 1 && !defined $o->{TightLabels})
			      || $o->{TightLabels}
			      ) ? 1 : 0 ];
  my($sz);
  pgqch($sz);

  pgbbuf(); # Begin a buffered batch output to the device
  pgsch($sz * ( $o->{TitleSize} || 1 ));
             # The 'T' offset is computed so that the original
             # vertical center is maintained.
  pgmtxt('T', ($p->[0]+0.5)/( $o->{TitleSize} || 1 ) - 0.5 , 0.5, 0.5, $o->{Title});

  pgebuf();  # Flush the buffer to avoid a pgplot bug that produced
  pgbbuf();  # doubled titles for some devices (notably the ppm device).

  pgsch($sz);
  pgmtxt('B', $p->[1],  0.5, 0.5, $o->{XTitle});
  pgmtxt('L', $p->[2],  0.5, 0.5, $o->{YTitle});
  pgebuf();

#    pglab($o->{XTitle}, $o->{YTitle}, $o->{Title});


  pgslw($old_lw) if defined $old_lw;
  $self->_restore_status;
  &release_signals;

}


############ Exported functions #################

# Open/reopen the graphics device

################ Supports two new options::
## NewWindow and WindowName


sub CtoF77coords{		# convert a transform array from zero-offset to unit-offset images
  my $self = shift;
  my $tr = pdl(shift);		# Copy
  set($tr, 0, at($tr,0)-at($tr,1)-at($tr,2));
  set($tr, 3, at($tr,3)-at($tr,4)-at($tr,5));
  return $tr;
}



# set the envelope for plots and put auto-axes on hold

sub env {
  my $self=shift;

  # Inserted 28/2/01 - JB to avoid having to call release whenever
  # you want to move to the next panel after using env.
  $self->release() if $self->held();
  # The following is necessary to advance the panel if wanted...
  my ($in, $opt)=_extract_hash(@_);
  $opt = {} if !defined($opt);
  my $o = $self->{PlotOptions}->options($opt);

  #
  # Inserted 06/08/01 - JB to be able to determine whether the user has
  # specified a particular PlotPosition in which case we do _not_ call
  # _check_move_or_erase...
  #
  my $o2 = $self->{Options}->options($opt);
  if (!defined($o2->{PlotPosition}) || $o2->{PlotPosition} eq 'Default') {
      $self->_check_move_or_erase($o->{Panel}, $o->{Erase});
  }

  release_and_barf 'Usage: env ( $xmin, $xmax, $ymin, $ymax, [$just, $axis, $opt] )'
    if ($#_==-1 && !defined($self->{_env_options}) && !defined($PREVIOUS_ENV)) ||
      ($#_>=0 && $#_<=2) || $#_>6;
  my(@args);

  # Set the args. The logic here was extended 13/8 by JB to use the
  # previous setting of the plot env variables regardless of device
  # if the current device does not have a setting for env etc.
  if ($#_ == -1) {
    if (@{$self->{_env_options}}) {
      @args = @{$self->{_env_options}};
    } elsif (defined($PREVIOUS_ENV)) {
      @args = @{$PREVIOUS_ENV};
    } else {
      @args = ();
    }
  } else {
    @args = @_;
  }
  $self->initenv( @args );
  ## The adding to state has to take place here to avoid being cleared
  ## buy the call to initenv...
  $self->_add_to_state(\&env, $in, $opt);
  $self->hold();


  1;
}

# Plot a histogram with pgbin()

{
  my $bin_options = undef;


  sub bin {
    my $self = shift;
    if (!defined($bin_options)) {
      $bin_options = $self->{PlotOptions}->extend({Centre => 1});
      $bin_options->add_synonym({Center => 'Centre'});
    }
    my ($in, $opt)=_extract_hash(@_);
    $self->_add_to_state(\&bin, $in, $opt);


    &catch_signals;

    release_and_barf 'Usage: bin ( [$x,] $data, [$options] )' if $#$in<0 || $#$in>2;
    my ($x, $data)=@$in;

    $self->_checkarg($x,1);

    my $n = nelem($x);
    if ($#$in==1) {
      $self->_checkarg($data,1); release_and_barf '$x and $y must be same size' if $n!=nelem($data);
    } else {
      $data = $x; $x = float(sequence($n));
    }

    # Parse options
    $opt={} unless defined($opt);
    my ($o, $u_opt) = $self->_parse_options($bin_options,$opt);

    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});
    unless ( $self->held() ) {
      my ($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ?
	   @{$o->{XRange}} : minmax($x);
      my ($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ?
	   @{$o->{YRange}} : minmax($data);
      if ($xmin == $xmax) { $xmin -= 0.5; $xmax += 0.5; }
      if ($ymin == $ymax) { $ymin -= 0.5; $ymax += 0.5; }
      $self->initenv( $xmin, $xmax, $ymin, $ymax, $opt );
    }
    $self->_save_status();

    my $centre = $o->{Centre};

    # For the standard parser we only want the options that the user set!
    # $bin_options->full_options(0);
    # my $u_opt = $bin_options->current();
    # $bin_options->full_options(1);

    # Let's also parse the options if any.
    $self->_standard_options_parser($u_opt);
    pgbin($n, $x->get_dataref, $data->get_dataref, $centre);
    $self->_restore_status();

    &release_signals;
    1;
  }
}




{
    use strict;
    my $transform_options = undef;

    sub transform {
	# Compute the transform array needed in contour and image plotting
	my $self = shift;

	if (!defined($transform_options)) {
	  $transform_options =
	    $self->{PlotOptions}->extend({Angle => undef,
					  ImageDims => undef,
					  Pixinc => undef,
					  ImageCenter => undef,
					  RefPos => undef
					  });
	  $transform_options->synonyms({
	      ImageDimensions => 'ImageDims',
	      ImageCentre => 'ImageCenter',
	      ReferencePosition => 'RefPos',
	      });
	}

	# parse the input
	my ($in, $opt)=_extract_hash(@_);
	my ($x_pix, $y_pix)= @$in;

	# handle options
	$opt = {} if !defined($opt);
	my ($o, $u_opt) = $self->_parse_options($transform_options, $opt);
	$self->_standard_options_parser($u_opt);

	my ($angle, $x_pixinc, $y_pixinc, $xref_pix, $yref_pix, $xref_wrld, $yref_wrld);
	if (defined($o->{Angle})) {
	    $angle = $o->{Angle};
	}
	else {
	    $angle = 0;
	}

	if (defined($o->{Pixinc})) {
	    if (ref($o->{Pixinc}) eq 'ARRAY') {
		($x_pixinc, $y_pixinc) = @{$o->{Pixinc}};
	    }
	    else {
		$x_pixinc = $y_pixinc = $o->{Pixinc};
	    }
	}
	else {
	    $x_pixinc = $y_pixinc = 1;
	}

	if ( defined $o->{ImageDims} ) {
	    if ( ref($o->{ImageDims}) eq 'ARRAY' ) {
		($x_pix, $y_pix) = @{$o->{ImageDims}};
	    }
	    else {
		release_and_barf "Image dimensions must be given as an array reference!";
	    }
	}

	# The user has to pass the dimensions of the image somehow, so this
	# is a good point to check whether he/she/it has done so.
	unless (defined($x_pix) && defined($y_pix)) {
	  release_and_barf "You must pass the image dimensions to the transform routine\n";
	}

	# The RefPos option gives more flexibility than
	# ImageCentre, since ImageCentre => [ a, b ] is the same
	# as PosReference => [ [(nx-1)/2,(ny-1/2)], [a,b] ].
	# We use ImageCentre in preference to PosReference
	#
	if (defined $o->{ImageCenter}) {
	    print "transform() ignoring RefPos as seen ImageCentre\n"
		if defined $o->{RefPos} and $PDL::verbose;
	    my $ic = $o->{ImageCenter};
	    if (ref($ic) eq 'ARRAY') {
	        ($xref_wrld, $yref_wrld) = @{$ic};
	    }
	    else {
		$xref_wrld = $yref_wrld = $ic;
	    }

	    $xref_pix = ($x_pix - 1)/2;
	    $yref_pix = ($y_pix - 1)/2;

	}
	elsif ( defined $o->{RefPos} ) {
	    my $aref = $o->{RefPos};
	    release_and_barf "RefPos option must be sent an array reference.\n"
		unless ref($aref) eq 'ARRAY';
	    release_and_barf "RefPos must be a 2-element array reference\n"
		unless $#$aref == 1;
	    my $pixref  = $aref->[0];
	    my $wrldref = $aref->[1];
	    release_and_barf "Elements of RefPos must be 2-element array references\n"
		unless $#$pixref == 1 and $#$wrldref == 1;

	    ($xref_pix,  $yref_pix)  = @{$pixref};
	    ($xref_wrld, $yref_wrld) = @{$wrldref};
	}
	else {
	    $xref_wrld = $yref_wrld = 0;
	    $xref_pix = ($x_pix - 1)/2;
	    $yref_pix = ($y_pix - 1)/2;
	}

	# The elements of the transform piddle,
	# here labelled t0 to t5, relate to the
	# following maxtix equation:
	#
	#   world = zp + matrix * pixel
	#
	# world  - the position of the point in the world,
	#          ie plot, coordinate system
	# pixel  - the position of the point in pixel
	#          coordinates (bottom-left is 0,0 pixel)
	# zp     - (t0)
	#          (t3)
	# matrix - (t1 t2)
	#          (t4 t5)
	#
	my $ca = cos( $angle );
	my $sa = sin( $angle );
	my $t1 = $x_pixinc * $ca;
	my $t2 = $y_pixinc * $sa;
	my $t4 = -$x_pixinc * $sa;
	my $t5 = $y_pixinc * $ca;

	return pdl(
		   $xref_wrld - $t1 * $xref_pix - $t2 * $yref_pix,
		   $t1, $t2,
		   $yref_wrld - $t4 * $xref_pix - $t5 * $yref_pix,
		   $t4, $t5
		   );
    }
}


# display a contour map of an image using pgconb()

{

  my $cont_options = undef;


  sub cont {
    my $self=shift;
    if (!defined($cont_options)) {
      $cont_options = $self->{PlotOptions}->extend({Contours => undef,
						    Follow => 0,
						    Labels => undef,
						    LabelColour => undef,
						    Missing => undef,
						    NContours => undef,
						    FillContours => undef});
      my $t = {
	       LabelColour => {
			       'White' => 0, 'Black' => 1, 'Red' => 2,
			       'Green' => 3, 'Blue' => 4, 'Cyan' => 5,
			       'Magenta' => 6, 'Yellow' => 7, 'Orange' => 8,
			       'DarkGray' => 14, 'DarkGrey' => 14,
			       'LightGray' => 15, 'LightGrey' => 15
			      }
	      };
      $cont_options->add_translation($t);
    }


    my ($in, $opt)=_extract_hash(@_);
    $self->_add_to_state(\&cont, $in, $opt);

    release_and_barf 'Usage: cont ( $image, %options )' if $#$in<0;

    &catch_signals;

    # Parse input
    my ($image, $contours, $tr, $misval) = @$in;
    $self->_checkarg($image,2);
    my($nx,$ny) = $image->dims;
    my ($ncont)=9;		# The number of contours by default

    # First save the present status
    $self->_save_status();


    # Then parse the common options
    #
    # These will be all options.
    $opt = {} if !defined($opt);
    my ($o, $u_opt) = $self->_parse_options($cont_options, $opt);
    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

    $self->_standard_options_parser($u_opt);
    my ($labelcolour);
    pgqci($labelcolour);	# Default let the labels have the chosen colour.


    my ($labels, $fillcontours, $angle);
    my $usepgcont = 0;

    $contours = $o->{Contours} if defined($o->{Contours});
    $ncont = $o->{NContours} if defined($o->{NContours});
    $misval = $o->{Missing} if defined($o->{Missing});
    $tr = $o->{Transform} if defined($o->{Transform});
    $labelcolour = $o->{LabelColour} if defined($o->{LabelColour});
    $labels = $o->{Labels} if defined($o->{Labels});
    $usepgcont = $o->{Follow} if defined($o->{Follow});
    $fillcontours = $o->{FillContours} if defined($o->{FillContours});

    if (defined($tr)) {
      $self->_checkarg($tr,1);
      release_and_barf '$transform incorrect' if nelem($tr)!=6;
    } else {
      $tr = float [0,1,0, 0,0,1];
    }

    $tr = $self->CtoF77coords($tr);

    if (!$self->held()) {
      $self->initenv( _image_xyrange($tr,$nx,$ny,$o), $o );
    }

    if (!defined($contours)) {
      my($minim, $maxim)=minmax($image);
      $contours = xlinvals(zeroes($ncont), $minim, $maxim)
    }
    else {
	$ncont = nelem($contours);
    }

    $self->_checkarg($contours,1);

    print "Contouring $nx x $ny image from ",min($contours), " to ",
      max($contours), " in ",nelem($contours)," steps\n" if $PDL::verbose;

    if (defined($fillcontours)) {
      pgbbuf();
      if (ref $fillcontours ne PDL) {
	$fillcontours = zeroes($ncont - 1)->xlinvals(0,1)->dummy(0,3);
      } elsif ($fillcontours->getndims == 1) {
	$fillcontours = $fillcontours->dummy(0,3);
      } elsif (($fillcontours->getdim(1) != $ncont - 1) ||
	       ($fillcontours->getdim(0) != 3)) {
	release_and_barf "Argh, wrong dims in filled contours!";
      }
      my ($cr, $cg, $cb, $i);
      pgqcr(16, $cr, $cg, $cb); # Save color index 16
      # Loop over filled contours (perhaps should be done in PP for speed)
      # Do not shade negative and 0-levels
      for ($i = 0; $i < ($ncont - 1); $i++) {
	pgscr(16, list $fillcontours->(:,$i));
	pgsci(16);
	pgconf($image->get_dataref, $nx, $ny,
               1, $nx, 1, $ny,
	       list($contours->($i:($i+1))), $tr->get_dataref);
      }
      pgscr(16, $cr, $cg, $cb); # Restore color index 16
      pgebuf();
    } elsif (defined($misval)) {
      pgconb( $image->get_dataref, $nx,$ny,1,$nx,1,$ny,
	      $contours->get_dataref,
	      nelem($contours), $tr->get_dataref, $misval);
    } elsif (abs($usepgcont) == 1) {
      pgcont( $image->get_dataref, $nx,$ny,1,$nx,1,$ny,
	      $contours->get_dataref,
	      $usepgcont*nelem($contours), $tr->get_dataref);
    } else {
      pgcons( $image->get_dataref, $nx,$ny,1,$nx,1,$ny,
	      $contours->get_dataref, nelem($contours), $tr->get_dataref);
    }

    # Finally label the contours.
    if (defined($labels) && $#$labels+1==nelem($contours)) {

      my $label=undef;
      my $count=0;
      my $minint=long($nx/10)+1; # At least stretch a tenth of the array
      my $intval=long($nx/3)+1;	#

      my $dum;
      pgqci($dum);
      $self->_set_colour($labelcolour);
      foreach $label (@{$labels}) {
	pgconl( $image->get_dataref, $nx,$ny,1,$nx,1,$ny,
		$contours->(($count)),
		$tr->get_dataref, $label, $intval, $minint);
	$count++;
      }
      $self->_set_colour($dum);
    } elsif (defined($labels)) {
      #
      #  We must have had the wrong number of labels
      #
      warn <<EOD
   You must specify the same number of labels as contours.
   Labelling has been ignored.
EOD

    }

    # Restore attributes
      $self->redraw_axes unless $self->held(); # Redraw box
      $self->_restore_status();

    &release_signals;

    1;
  }
}

# Plot errors with pgerrb()

{

  my $errb_options = undef;

  sub errb {
    my $self = shift;
    if (!defined($errb_options)) {
      $errb_options = $self->{PlotOptions}->extend({Term => 1});
      $errb_options->add_synonym({Terminator => 'Term'});
    }
    my ($in, $opt)=_extract_hash(@_);
    $self->_add_to_state(\&bin, $in, $opt);

    &catch_signals;

    $opt = {} if !defined($opt);

    release_and_barf <<'EOD' if @$in==0 || @$in==1 || @$in > 7;
 Usage: $w-> errb ( $y, $yerrors [, $options] )
	$w-> errb ( $x, $y, $yerrors [, $options] )
	$w-> errb ( $x, $y, $xerrors, $yerrors [, $options])
	$w-> errb ( $x, $y, $xloerr, $xhierr, $yloerr, $yhierr [, $options])
EOD

    my @t=@$in;
    my $n;

    # it's possible the user slipped in undefs as the data position.
    # that's illegal and won't be caught in next loop
    barf "Must specify data position"
      if ! defined $t[0] || ( @t > 2 && ! defined $t[1] );

    # loop over input data; skip undefined values, as they are
    # used to flag missing error bars.  all data should have the
    # same dims as the first piddle.
    for ( my $i = 0 ; $i < @t ; $i++ )
      {
	next if ! defined $t[$i];

	$self->_checkarg($t[$i], 1);

	$n = nelem($t[$i]) if $i == 0;
	barf "Args must have same size" if nelem($t[$i]) != $n;
      }

    my $x = @t < 3 ? float(sequence($n)) : shift @t;
    my $y = shift @t;

    # store data in a hash to automate operations
    my %d;
    $d{x}{data} = $x;
    $d{y}{data} = $y;

    ( $d{y}{err} ) = @t if @t == 1;
    ( $d{x}{err}, $d{y}{err} ) = @t if @t == 2;
    ( $d{x}{loerr}, $d{x}{hierr},
      $d{y}{loerr}, $d{y}{hierr} ) = @t if @t == 4;

    my ($o, $u_opt) = $self->_parse_options($errb_options, $opt);
    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});
    unless( $self->held() ) {
      # Allow for the error bars
      my ( $xmin, $xmax, $ymin, $ymax );


      # Bug fix, JB 03/03/05 - user input ranges were not considered.
      my @axes_to_do = ();

      if (ref($o->{XRange})) {
	($d{'x'}{min}, $d{'x'}{max})=@{$o->{XRange}};
	if ($d{'x'}{xmin} == $d{'x'}{max}) { $d{'x'}{min} -= 0.5; $d{'x'}{max} += 0.5; }
      } else {
	push @axes_to_do, 'x';
      }
      if (ref($o->{YRange})) {
	($d{'y'}{min}, $d{'y'}{max})=@{$o->{YRange}};
	 if ($d{'y'}{xmin} == $d{'y'}{max}) { $d{'y'}{min} -= 0.5; $d{'y'}{max} += 0.5; }
      } else {
	push @axes_to_do, 'y';
      }


      # loop over the axes to calculate plot limits
      for my $ax (@axes_to_do)
	{
	  $axis = $d{$ax};
	  $range = uc $ax . 'range';

	  # user may have specified range limits already; pull them in
	  ($axis->{min},$axis->{max}) = @{$o->{$range}}
 	  if ref $o->{$range} eq 'ARRAY';

	  # skip if user specified range limits
	  unless ( exists $axis->{min} )
	    {
	      my ( $min, $max );

	      # symmetric error bars
	      if ( defined $axis->{err} )
		{
		  $min = min( $axis->{data} - $axis->{err} );
		  $max = max( $axis->{data} + $axis->{err} );
		}

	      # assymetric error bars
	      else
		{
		  # lo error bar specified
		  if ( defined $axis->{loerr} )
		    {
		      $min = min( $axis->{data} - $axis->{loerr} );
		    }

		  # hi error bar specified
		  if ( defined $axis->{hierr} )
		    {
		      $max = max( $axis->{data} + $axis->{hierr} );
		    }
		}

	      # handle the case where there is no error bar.
	      $min = $axis->{data}->min unless defined $min;
	      $max = $axis->{data}->max unless defined $max;

	      # default range for infinitesimal data range
	      if ($min == $max) { $min -= 0.5; $max += 0.5; }

	      $axis->{min} = $min;
	      $axis->{max} = $max;
	    }
	}

       $self->initenv( $d{x}{min}, $d{x}{max}, $d{y}{min}, $d{y}{max}, $opt );
    }

    $self->_save_status();
    # Let us parse the options if any.

    my $term=$o->{Term};
    my $symbol;
    my $plot_points=0;		# We won't normally plot the points

    if (defined($u_opt->{Symbol})) {
      $symbol = $u_opt->{Symbol};
      $plot_points=1;
    }

    # Parse other standard options.
    $self->_standard_options_parser($u_opt);

    # map our combination of errors onto pgerrb's DIR parameter. note that
    # DIR(Y) = DIR(X) + 1 for similar error bar configurations
    $d{x}{dir} = 0;
    $d{y}{dir} = 1;

    # loop over axes, plotting the appropriate error bars
    for my $axis ( $d{x}, $d{y} )
    {
      my $dir = $axis->{dir};

      # symmetric error bars
      if ( defined $axis->{err} )
      {
	pgerrb(5 + $dir, $n, $x->get_dataref, $y->get_dataref,
	       $axis->{err}->get_dataref,$term);
      }

      # assymetric error bars
      else
      {
	if ( defined $axis->{hierr} )
	{
	  pgerrb(1 + $dir, $n, $x->get_dataref, $y->get_dataref,
		 $axis->{hierr}->get_dataref,$term);
	}

	if ( defined $axis->{loerr} )
	{
	  pgerrb(3 + $dir, $n, $x->get_dataref, $y->get_dataref,
		 $axis->{loerr}->get_dataref,$term);
	}

      }
    }

    if ($plot_points) {
       if (exists($opt->{SymbolSize})) { # Set symbol size (2001.10.22 kwi)
           pgsch($opt->{SymbolSize});
       }
      $symbol=long($symbol);
      my $ns=nelem($symbol);
      pgpnts($n, $x->get_dataref, $y->get_dataref, $symbol->get_dataref, $ns)
    }

    $self->_restore_status();
    &release_signals;
    1;
  }
}

#
# A "threaded" line - I cannot come up with a more elegant way of doing
# this without re-coding bits of thread_over but it might very well be
# that you may :)
#

my $line_options = undef;
sub tline {

  my $self = shift;
  my ($in, $opt)=_extract_hash(@_);
  $self->_add_to_state(\&tline, $in, $opt);
  $opt={} if !defined($opt);

  release_and_barf 'Usage tline ([$x], $y, [, $options])' if $#$in < 0 || $#$in > 2;
  my ($x, $y)=@$in;
  if (!defined($line_options)) {
    $line_options=$self->{PlotOptions}->extend({Missing => undef});
  }

  if ($#$in==0) {
    $y = $x; $x = $y->xvals();
  }

  &catch_signals;

  # This is very very kludgy, but it was the best way I could find..
  my $o = _thread_options($y->getdim(1), $opt);
  # We need to keep track of the current status of hold or not since
  # the tline function automatically enforces a hold to allow for overplots.
  my $tmp_hold = $self->held();
  unless ( $self->held() ) {
    my ($o, $u_opt) = $self->_parse_options($line_options,$opt);
    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

    # use Data::Dumper;
    # print Dumper $o;
    # print Dumper $u_opt;

    my ($ymin, $ymax, $xmin, $xmax);
    # Make sure the missing value is used as the min or max value
    if (defined $o->{Missing} ) {
      ($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ?
	@{$o->{YRange}} : minmax($y->where($y != $o->{Missing}));
      ($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ?
	@{$o->{XRange}} : minmax($x->where($x != $o->{Missing}));
    } else {
      ($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ? @{$o->{YRange}} :
	minmax($y);
      ($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ? @{$o->{XRange}} :
	minmax($x);
    }
    if ($xmin == $xmax) { $xmin -= 0.5; $xmax += 0.5; }
    if ($ymin == $ymax) { $ymin -= 0.5; $ymax += 0.5; }
    # use Data::Dumper;
    # print "tline options: ", Dumper($opt), "\n";
    $self->initenv( $xmin, $xmax, $ymin, $ymax, $opt);
    $self->hold; # we hold for the duration of the threaded plot
  }
  _tline($x, $y, PDL->sequence($y->getdim(1)), $self, $o);
  $self->release unless $tmp_hold;

  &release_signals;
}


PDL::thread_define('_tline(a(n);b(n);ind()), NOtherPars => 2',
  PDL::over {
    my ($x, $y, $ind, $self, $opt)=@_;
    # use Data::Dumper;
    # print Dumper $opt->[$ind->at(0)];
    $self->line($x, $y,$opt->[$ind->at(0)] || {}); #
});


#
# A "threaded" point - I cannot come up with a more elegant way of doing
# this without re-coding bits of thread_over but it might very well be
# that you may :)
#

my $points_options = undef;
sub tpoints {

  my $self = shift;
  my ($in, $opt)=_extract_hash(@_);
  $self->_add_to_state(\&tpoints, $in, $opt);
  $opt={} if !defined($opt);

  release_and_barf 'Usage tpoints ([$x], $y, [, $options])' if $#$in < 0 || $#$in > 2;
  my ($x, $y)=@$in;

  &catch_signals;

  if ($#$in==0) {
    $y = $x; $x = $y->xvals();
  }

  # This is very very cludgy, but it was the best way I could find..
  my $o = _thread_options($y->getdim(1), $opt);
  # We need to keep track of the current status of hold or not since
  # the tline function automatically enforces a hold to allow for overplots.
  my $tmp_hold = $self->held();
  unless ( $self->held() ) {
    if (!defined($points_options)) {
      $points_options = $self->{PlotOptions}->extend({PlotLine => 0});
    }
    my ($o, $u_opt) = $self->_parse_options($points_options,$opt);
    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

    # use Data::Dumper;
    # print Dumper $o;
    # print Dumper $u_opt;

    my ($ymin, $ymax, $xmin, $xmax);
    # Make sure the missing value is used as the min or max value
    if (defined $o->{Missing} ) {
      ($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ?
	@{$o->{YRange}} : minmax($y->where($y != $o->{Missing}));
      ($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ?
	@{$o->{XRange}} : minmax($x->where($x != $o->{Missing}));
    } else {
      ($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ? @{$o->{YRange}} :
	minmax($y);
      ($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ? @{$o->{XRange}} :
	minmax($x);
    }
    if ($xmin == $xmax) { $xmin -= 0.5; $xmax += 0.5; }
    if ($ymin == $ymax) { $ymin -= 0.5; $ymax += 0.5; }
    $self->initenv( $xmin, $xmax, $ymin, $ymax, $opt);
    $self->hold; # we hold for the duration of the threaded plot
  }
  _tpoints($x, $y, PDL->sequence($y->getdim(1)), $self, $o);
  $self->release unless $tmp_hold;

  &release_signals;

}


PDL::thread_define('_tpoints(a(n);b(n);ind()), NOtherPars => 2',
  PDL::over {
    my ($x, $y, $ind, $self, $opt)=@_;
    $self->points($x, $y, $opt->[$ind->at(0)] || {});
});



# Plot a line with pgline()

{
  my $line_options = undef;

  #
  # lines: CED 17-Dec-2002
  #
  sub lines {
    my $self = shift;

    if(!defined($line_options)) {
      $line_options = $self->{PlotOptions}->extend({Missing=>undef});
    }
    my($in,$opt) = _extract_hash(@_);

    # Parse out the options and figure out which syntax is being used
    # This is a pain to look at but the computer does it behind your back so
    # what do you care? --CED
    my($x,$y,$p);

    if(@$in == 3) {
      release_and_barf "lines: inconsistent array refs in \$x,\$y,\$p call\n"
	if((ref $in->[0] eq 'ARRAY') ^ (ref $in->[1] eq 'ARRAY'));

      ($x,$y) =   (ref $in->[0] eq 'ARRAY') ?
	($in->[0],$in->[1]) : ([$in->[0]],[$in->[1]]);

      $p = (ref $in->[2] eq 'ARRAY') ? $in->[2] : [$in->[2]];
    }
    elsif(@$in == 2) { # $xy, $p  or $x,$y (no-$p)
      my($a) = (ref $in->[0] eq 'ARRAY') ? $in->[0] : [$in->[0]];
      my($b) = (ref $in->[1] eq 'ARRAY') ? $in->[1] : [$in->[1]];

      release_and_barf " lines: \$xy must be a piddle\n"
	unless(UNIVERSAL::isa($a->[0],'PDL'));

      if(  ( ref $in->[0] ne ref $in->[1] ) ||
	   ( ! UNIVERSAL::isa($b->[0],'PDL') ) ||
	   ( $a->[0]->ndims > $b->[0]->ndims )
	   ) { # $xy, $p case -- split $xy into $x and $y.

	foreach $_(@$a){
	  push(@$x,$_->((0)));
	  push(@$y,$_->((1)));
	}
	$p = $b;

      } else {  # $x,$y,(omitted $p) case -- make default $p.
	$x = $a;
	$y = $b;
	$p = [1];
      }
    }

    elsif(@$in == 1) { # $xyp or $xy,(omitted $p) case
      my($a) = (ref $in->[0] eq 'ARRAY') ? $in->[0] : [$in->[0]];

      foreach $_(@$a) {
	push(@$x,$_->((0)));
	push(@$y,$_->((1)));
	push(@$p, ($_->dim(0) >= 3) ? $_->((2)) : 1);
      }
    }

    else {
      release_and_barf " lines: ".scalar(@$in)." is not a valid number of args\n";
    }

    release_and_barf "lines: x and y lists have different numbers of elements"
      if($#$x != $#$y);

    release_and_barf "lines: \$o->\{Missing\} must be an array ref if specified\n" if (defined $o->{Missing} && ref $o->{Missing} ne 'ARRAY');

    ##############################
    # Now $x, $y, and $p all have array refs containing their respective
    # vectors.  Set up pgplot (copy-and-pasted from line; this is probably
    # the Wrong thing to do -- we probably ought to call line directly).
    #
    &catch_signals;

    $opt = {} unless defined($opt);
    my($o,$u_opt) = $self->_parse_options($line_options,$opt);

    $self->_check_move_or_erase($o->{Panel},$o->{Erase});

    my $held = $self->held();
    unless ($held) {
      my($ymin,$ymax,$xmin,$xmax) = (
				     zeroes(scalar(@$y)),
				     zeroes(scalar(@$y)),
				     zeroes(scalar(@$y)),
				     zeroes(scalar(@$y))
				     );
      my $thunk = sub {
	my($range) = shift;
	my($vals,$missing,$min,$max,$pp) = @_;
	if(ref $range eq 'ARRAY') {
	    $min .= $range->[0];
	    $max .= $range->[1];
	    return;
	}
	my($mask) = (isfinite $vals);
	$mask &= ($vals != $missing) if(defined $missing);
	$mask->(1:-1) &= (($pp->(0:-2) != 0) | ($pp->(1:-1) != 0));
	my($a,$b) = minmax(where($vals,$mask));
	$min .= $a;
	$max .= $b;
      };

      for my $i(0..$#$x) {
	my($pp) = $#$p ? $p->[$i] : $p->[0]; # allow scalar pen in array case
        $pp = pdl($pp) unless UNIVERSAL::isa($pp,'PDL');
	my $miss = defined $o->{Missing} ? $o->{Missing}->[$i] : undef;
	&$thunk($u_opt->{XRange},$x->[$i],$miss,$xmin->(($i)),$xmax->(($i)),$pp);
	&$thunk($u_opt->{YRange},$y->[$i],$miss,$ymin->(($i)),$ymax->(($i)),$pp);
      }

      $xmin = $xmin->min;
      $xmax = $xmax->max;
      $ymin = $ymin->min;
      $ymax = $ymax->max;

      if($xmin==$xmax) { $xmin -= 0.5; $xmax += 0.5; }
      if($ymin==$ymax) { $ymin -= 0.5; $ymax += 0.5; }

      print "lines: xmin=$xmin; xmax=$xmax; ymin=$ymin; ymax=$ymax\n"
	if($PDL::verbose);
      $self->initenv($xmin,$xmax,$ymin,$ymax,$opt);
    }

    $self->_save_status();
    $self->_standard_options_parser($u_opt);

    my($lw);    # Save the normal line width
    pgqlw($lw);
    my($hh) = 0; # Indicates local window hold

    # Loop over everything in the list
    for my $i(0..$#$x) {
      my($xx,$yy) = ($x->[$i],$y->[$i]);
      next if($xx->nelem < 2);

      my($pp) = $#$p ? $p->[$i] : $p->[0];  # allow scalar pen in array case
      my($miss) = defined $o->{Missing} ? $o->{Missing}->[$i] : undef;
      my($n) = $xx->nelem;

      $pp = pdl($pp) unless UNIVERSAL::isa($pp,'PDL');

      $pp = zeroes($xx)+$pp
	if($pp->nelem == 1);

      $pp = $pp->copy; # Make a duplicate to scribble on
      $pp->(0:-2) *= ($xx->(0:-2) + $xx->(1:-1))->isfinite;
      $pp->(0:-2) *= ($yy->(0:-2) + $yy->(1:-1))->isfinite;

      my($pn,$pval) = rle($pp);
      my($pos,$run,$rl) = (0,0,0);


      # Within each list element loop over runs of pen value
      while(($run<$pn->nelem) && ($rl = $pn->at($run))) {  # assignment
	  my($pv);
	  if($pv = $pval->at($run)) { # (assignment) Skip runs with pen value=0
	      my $top = $pos+$rl;   $top-- if($top == $xx->dim(0));
	      my $x0 = float $xx->($pos:$top);
	      my $y0 = float $yy->($pos:$top);

	      $self->_set_colour(abs($pv)*(defined $o->{Colour} ? $o->{Colour}:1));

	      ($x0,$y0) = $self->checklog($x0,$y0) if $self->autolog;

	      if($pv > 0) {
		  pgslw($lw);
	      } else {
		  pgslw(1);
	      }

	      if(defined($miss)) {
		  my $mpt = defined $miss ? $miss->($pos:$top) : undef;
		  pggapline($x0->nelem,$miss->($pos:$top),$x0->get_dataref, $y0->get_dataref);
	      } else {
		  pgline($x0->nelem,$x0->get_dataref,$y0->get_dataref,);
	      }

	      $self->hold() unless $hh++;
	  }

	  $pos += $rl;
	  $run++;
      } # end of within-piddle polyline loop
  } # end of array ref loop

    pgslw($lw); # undo incredible shrinking line width$

    $self->release() unless($held);
    $self->_restore_status();
    $self->_add_to_state(\&lines,$in,$opt);

    &release_signals;
    1;
  }

  sub line {
    my $self = shift;
    if (!defined($line_options)) {
      $line_options=$self->{PlotOptions}->extend({Missing => undef});
    }
    my ($in, $opt)=_extract_hash(@_);

    release_and_barf 'Usage: line ( [$x,] $y, [$options] )' if $#$in<0 || $#$in>2;
    my($x,$y) = @$in;
    $self->_checkarg($x,1);
    my $n = nelem($x);

    &catch_signals;

    my ($is_1D, $is_2D);
    if ($#$in==1) {
      $is_1D = $self->_checkarg($y,1,undef,1);
      if (!$is_1D) {
	$is_2D = $self->_checkarg($y,2,undef,1);
	release_and_barf '$y must be 1D (or 2D for threading!)'."\n" if !$is_2D;

	# Ok, let us use the threading possibility.
	$self->tline(@$in, $opt);

	&release_signals;
	return;
      } else {
	release_and_barf '$x and $y must be same size' if $n!=nelem($y);
      }
    } else {
      $y = $x; $x = float(sequence($n));
    }

    # Let us parse the options if any.
    $opt = {} if !defined($opt);
    my ($o, $u_opt) = $self->_parse_options($line_options, $opt);
    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

    unless ( $self->held() ) {

      # Make sure the missing value is used as the min or max value.
      # Also, do autoscaling but avoid infinities.
      my ($ymin, $ymax, $xmin, $xmax);

      # Thunk for finding max and min X and Y ranges
      my($thunk) = sub {
	my($range) = shift;  return @{$range} if(ref $range eq 'ARRAY');
	my($vals, $missing) = @_;
	my($mask) = (isfinite $vals);
	$mask &= ($vals != $missing) if(defined $missing);
	minmax(where($vals,$mask));
      };

      ($xmin,$xmax) = &$thunk($o->{XRange},$x,$o->{Missing});
      ($ymin,$ymax) = &$thunk($o->{YRange},$y,$o->{Missing});

      if ($xmin == $xmax) { $xmin -= 0.5; $xmax += 0.5; }
      if ($ymin == $ymax) { $ymin -= 0.5; $ymax += 0.5; }
      print("line: xmin=$xmin; xmax=$max; ymin=$ymin; ymax=$ymax\n")
	if($PDL::verbose);
      $self->initenv( $xmin, $xmax, $ymin, $ymax, $opt);
    }
    $self->_save_status();
    $self->_standard_options_parser($u_opt);

    # take logs if we are in autolog mode and axis option indicates logs
    ($x,$y) = $self->checklog($x,$y) if $self->autolog;

    # If there is a missing value specified, use pggapline
    # to break the line around missing values.
    if (defined $o->{Missing}) {
      pggapline ($n, $o->{Missing}, $x->get_dataref, $y->get_dataref);
    } else {
      pgline($n, $x->get_dataref, $y->get_dataref);
    }
    $self->_restore_status();
    $self->_add_to_state(\&line, $in, $opt);

    &release_signals;
    1;
  }
}
# Plot points with pgpnts()



sub arrow {

  my $self = shift;

  my ($in, $opt)=_extract_hash(@_);
  $opt = {} if !defined($opt);

  release_and_barf 'Usage: arrow($x1, $y1, $x2, $y2 [, $options])' if $#$in != 3;

  my ($x1, $y1, $x2, $y2)=@$in;

  &catch_signals;

  my ($o, $u_opt) = $self->_parse_options($self->{PlotOptions}, $opt);
  $self->_check_move_or_erase($o->{Panel}, $o->{Erase});
  unless ($self->held()) {
    $self->initenv($x1, $x2, $y1, $y2, $opt);
  }

  $self->_save_status();
  $self->_standard_options_parser($u_opt);
  pgarro($x1, $y1, $x2, $y2);
  $self->_restore_status();
  $self->_add_to_state(\&arrow, $in, $opt);

  &release_signals;
}



{
  my $points_options = undef;

  sub points {

    my $self = shift;
    if (!defined($points_options)) {
      $points_options = $self->{PlotOptions}->extend({PlotLine => 0});
    }
    my ($in, $opt)=_extract_hash(@_);
    release_and_barf 'Usage: points ( [$x,] $y, $sym, [$options] )' if $#$in<0 || $#$in>2;
    my ($x, $y, $sym)=@$in;
    $self->_checkarg($x,1);
    my $n=nelem($x);

    &catch_signals;

    my ($is_1D, $is_2D);
    if ($#$in>=1) {
      $is_1D = $self->_checkarg($y,1,undef,1);
      if (!$is_1D) {
	$is_2D = $self->_checkarg($y,2,undef,1);
	release_and_barf '$y must be 1D (or 2D for threading!)'."\n" if !$is_2D;

	# Ok, let us use the threading possibility.
	$self->tpoints(@$in, $opt);
	return;

      } else {
	release_and_barf '$x and $y must be same size' if $n!=nelem($y);
      }
    } else {
      $y = $x; $x = float(sequence($n));
    }

    # Let us parse the options if any.
    $opt = {} if !defined($opt);
    my ($o, $u_opt) = $self->_parse_options($points_options, $opt);
    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

    #
    # Save some time for large datasets.
    #
    unless ( $self->held() ) {
      my ($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ?
	   @{$o->{XRange}} : minmax($x);
      my ($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ?
	   @{$o->{YRange}} : minmax($y);
      if ($xmin == $xmax) { $xmin -= 0.5; $xmax += 0.5; }
      if ($ymin == $ymax) { $ymin -= 0.5; $ymax += 0.5; }
      $self->initenv( $xmin, $xmax, $ymin, $ymax, $opt );
    }
    $self->_save_status();
    $self->_standard_options_parser($u_opt);

    # take logs if we are in autolog mode and axis option indicates logs
    ($x,$y) = $self->checklog($x,$y) if $self->autolog;

    if (exists($opt->{SymbolSize})) { # Set symbol size (2001.10.22 kwi)
       pgsch($opt->{SymbolSize});
    }

    if (exists($opt->{ColorValues})) {
      my $sym ||= $o->{Symbol} || 0;
      my $z   = $opt->{ColorValues};
      $self->_checkarg($z,1);    # make sure this is a float PDL
      pgcolorpnts($n, $x->get_dataref, $y->get_dataref, $z->get_dataref, $sym);
    } else {

      # Set symbol if specified in the options hash.
      ## $sym ||= $o->{Symbol};
      $sym = $o->{Symbol} unless defined $sym;

      $self->_checkarg($sym,1); my $ns = nelem($sym); $sym = long($sym);

      pgpnts($n, $x->get_dataref, $y->get_dataref, $sym->get_dataref, $ns);

    }

    #
    # Sometimes you would like to plot a line through the points straight
    # away.
    pgline($n, $x->get_dataref, $y->get_dataref) if $o->{PlotLine}>0;

    $self->_restore_status();
    $self->_add_to_state(\&points, $in, $opt);
    &release_signals;
    1;
  }
}

# add a "wedge" to the image
# - since this can be called from imag() as well as by the user,
#   we make all parameters defined as options
#
#   Wedge => {
#              Side         => one of B L T R,
#              Displacement => default = 2,
#              Width        => default = 3,
#              Fg/Bg        => default, values used by imag()
#              Label        => default ''
#            }
#
# - uses horrible _store()/_retrieve() routines, which need to
#   know (but don't) about changing window focus/erasing/...
#
# Want to be able to specify a title (optional)
# - also, by default want to use the axes colour/size, but want to be able to
#   over-ride this
#
# initial version by Doug Burke (11/20/00 ish)

{
    my $wedge_options = undef;

    sub draw_wedge {
	my $self = shift;
	if ( !defined($wegde_options) ) {
	    $wedge_options =
		$self->{PlotOptions}->extend({
		    Side => 'R',
		    Displacement => 1.5,
		    Width =>3.0,
		    WTitle => undef,
		    Label => undef,
		    ForeGround => undef,
		    BackGround => undef,
		});
	    $wedge_options->synonyms({ Fg => 'ForeGround', Bg => 'BackGround' });
	}

	my ( $in, $opt ) = _extract_hash(@_);
	$opt = {} unless defined($opt);
	release_and_barf 'Usage: $win->draw_wedge( [$options] )'
	    unless $#$in == -1;


	&catch_signals;

	# check imag has been called, and get information
	# - this is HORRIBLE
	my $iref = $self->_retrieve( 'imag' );
	release_and_barf 'draw_wedge() can only be called after a call to imag()'
	    unless defined $iref;

	# Let us parse the options if any.
	# - not convinced I know what I'm doing
	my $o;
	if ( defined $opt->{Wedge} ) {
	    $o = $wedge_options->options( $opt->{Wedge} );
	} else {
	    $o = $wedge_options->current();
	}
	$o->{ForeGround} = $$iref{max} unless defined( $o->{ForeGround} );
	$o->{BackGround} = $$iref{min} unless defined( $o->{BackGround} );

	# do we really want this?
	# - (03/15/01 DJB) removed since I assume that draw_wedge()
	#   will be called before the focus has been changed.
	#   Not ideal, but I don't think the current implementation will
	#   handle such cases anyway (ie getting the correct min/max values
	#   for the wedge).
#	$self->_check_move_or_erase($o->{Panel}, $o->{Erase});

	# get the options used to draw the axes
	# note: use the window object, not the options hash, though we
	# probably could/should do that
	my $wo = $self->{_env_options}[4];

	# Save current status
	$self->_save_status();

	# we use the colour/size of the axes here
	$self->_set_colour($wo->{AxisColour});
	pgsch($wo->{CharSize});

	# draw the wedge
	my $side = $o->{Side} . $$iref{routine};
	pgwedg( $side, $o->{Displacement}, $o->{Width}, $o->{BackGround}, $o->{ForeGround}, $o->{Label} || $o->{WTitle} || '' );

	# restore character colour & size before returning
	$self->_restore_status();
	$self->_add_to_state(\&draw_wedge, $in, $opt);

	&release_signals;
	1;
    } # sub: draw_wedge()
}

######################################################################
#
# imag and related functions
#
# display an image using pgimag()/pggray()/pgrgbi() as appropriate.
#
# The longish routine '_imag' handles the meat and potatoes of the setup,
# but hands off the final plot to the PGPLOT routines pgimag() or pgrgbi().
# It expects a ref to the appropriate function to be passed in.  The
# userland methods 'imag' and 'rgbi' are just trampolines that call _imag
# with the appropriate function ref.
#
# This gets pretty sticky for fits_imag, which is itself a trampoline for
# _fits_foo -- so if you call fits_imag, it trampolines into fits_foo, which
# does setup and then bounces into imag, which in turn hands off control
# to pgimag.  What a mess -- but at least it seems to work OK.  For now.
#  -- CED 20-Jan-2002
#
{
  # The ITF is in the general options - since other functions might want
  # it too.
  #
  # There is some repetetiveness in the code, but this is to allow the
  # user to set global defaults when opening a new window.
  #
  #
  #

  my $im_options = undef;


  sub _imag {
    my $self = shift;

    if (!defined($im_options)) {
      $im_options = $self->{PlotOptions}->extend({
						  Min => undef,
						  Max => undef,
						  Range => undef,
						  CRange => undef,
						  DrawWedge => 0,
						  Wedge => undef,
						  Justify => undef,
						  Transform => undef
						 });
    }

    ##############################
    # Unwrap first two arguments:  the PGPLOT call and the
    # dimensions of the image variable (2 or 3 depending
    # on whether this is called by imag or rgbi)
    my $pgcall = shift;
    my $image_dims = shift;

    ##############################
    # Pull out the rest of the arg list, and parse the options (if any).
    my ($in, $opt)=_extract_hash(@_);

    $opt = {} if !defined($opt);
    my ($o, $u_opt) = $self->_parse_options($im_options, $opt);

    ##########
    # Default to putting tick marks outside the box, so that you don't
    # scrozzle images.

    $o->{Axis} = 'BCINST'
      unless (defined($opt->{Axis}) || ($o->{Axis} ne 'BCNST'));

    $self->_add_to_state(\&imag, $in, $opt);
    release_and_barf 'Usage: (imag|rgbi) ( $image,  [$min, $max, $transform] )' if $#$in<0 || $#$in>3;

    my ($image,$min,$max,$tr) = @$in;
    my ($cmin, $cmax) = (0,1);

    ## Make sure the image has the right number of dims...
    $self->_checkarg($image,$image_dims);

    my($nx,$ny) = $image->dims;
    $nx = 1 unless($nx);
    $ny = 1 unless($ny);

    my $itf = 0;

    $tr = $u_opt->{Transform} if exists($u_opt->{Transform});
    $min = $u_opt->{Min} if exists($u_opt->{Min});
    $max = $u_opt->{Max} if exists($u_opt->{Max});

    # Check on ITF value hardcoded in.
    $itf = $u_opt->{ITF} if exists($u_opt->{ITF});
    release_and_barf ( "illegal ITF value `$val'") if $itf > 2 || $itf < 0;

    ## Option checker thunk gets defined only on first run-through.
    our $checker = sub {
      my($name,$opt,$min,$max) = @_;
      delete $opt->{$name} unless(defined $opt->{$name});
      return unless exists($opt->{$name});
      release_and_barf("$name option must be an array ref if specified.\n")
	if( ref ($opt->{$name}) ne 'ARRAY' );
      ($$min,$$max) = @{$opt->{$name}} if defined($min);
    } unless(defined $checker);

    &$checker("Range",  $u_opt,  \$min,  \$max);
    &$checker("CRange", $u_opt, \$cmin, \$cmax);
    &$checker("XRange", $u_opt);
    &$checker("YRange", $u_opt);

    $min = min($image) unless defined $min;
    $max = max($image) unless defined $max;

    if (defined($tr)) {
	$self->_checkarg($tr,1);
	release_and_barf '$transform incorrect' if nelem($tr)!=6;
    } else {
	$tr = float [0,1,0, 0,0,1];
    }
    $tr = $self->CtoF77coords($tr);


    &catch_signals;

    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

    $self->initenv( _image_xyrange($tr,$nx,$ny,$o), $o );


    #
    # Commented out, CED, 5-Dec-2003 --
    # this is handled by redraw_axes, at the bottom.
    #
    #if (!$self->held()) {
    #  # Label axes if necessary
    #  if(defined ($u_opt->{Title} ||
    #		  $u_opt->{XTitle} ||
    #		  $u_opt->{YTitle})) {
    #	$self->label_axes($u_opt->{XTitle},
    #			  $u_opt->{YTitle},
    #			  $u_opt->{Title},
    #			  $u_opt);
    #  }
    # }

    pgsitf( $itf );
    my ($i1, $i2);

    pgqcir($i1, $i2); # Default color range

    my($c1,$c2);
    $c1 = int($i1 + ($i2-$i1) * $cmin + 0.5);
    $c2 = int($i1 + ($i2-$i1) * $cmax + 0.5);

    print "Displaying $nx x $ny image from $min to $max, using ".($c2-$c1+1)." colors ($c1-$c2)...\n" if $PDL::verbose;


    # Disable PS pggray output because the driver is busted in pgplot-2.3
    # (haven't tested later versions). pgimag seems to work OK for that
    # output tho'.
    if ($c2-$c1<16 || $self->{Device} =~ /^v?ps$/i) {
      print STDERR "_imag: Under 16 colors available; reverting to pggray\n"
	if($PDL::debug || $PDL::verbose);
      pggray( $image->get_dataref,
	      $nx,$ny,1,$nx,1,$ny, $min, $max,
	      $tr->get_dataref);
      $self->_store( imag => { routine => "G", min => $min, max => $max } );
    } else {
      $self->ctab('Grey') unless $self->_ctab_set(); # Start with grey

      pgscir($c1,$c2);

      &$pgcall( $image->get_dataref,
	      $nx,$ny,1,$nx,1,$ny, $min, $max,
	      $tr->get_dataref);

      pgscir($i1,$i2);

      $self->_store( imag => { routine => "I", min => $min, max => $max } );
    }

    # draw the wedge, if requested
    if ( $u_opt->{DrawWedge} ) {
	my $hflag = $self->held();
	$self->hold();
	$self->draw_wedge( $u_opt );
	$self->release() unless $hflag;
    }

    $self->redraw_axes($u_opt) unless $self->held();

    &release_signals;

    1;

  } # sub: imag()

}

######################################################################
# Here are the `top-level' imaging routines -- they call _imag to get
# the job done.


##########
# image - the basic image plotter

sub imag {
  my $me = shift;
  my $im = shift;
  my @a = @_;

  if(UNIVERSAL::isa($im,'PDL') && ($im->ndims == 3) && ($im->dim(2)==3)) {
    rgbi($me,$im,@a);
    return;
  }

  _imag($me,\&pgimag,2,$im,@a);
}


##########
# imag1 - Plot an image with Justify = 1

sub imag1 {
  my $self = shift;
  my ($in,$opt)=_extract_hash(@_);

  if (!defined($im_options)) {
    $im_options = $self->{PlotOptions}->extend({
      Min => undef,
      Max => undef,
      DrawWedge => 0,
      Wedge => undef,
      XTitle => undef,
      YTitle => undef,
      Title  => undef,
      Justify => 1
      });
  }

  # Let us parse the options if any.
  $opt = {} if !defined($opt);
  my ($o, $u_opt) = $self->_parse_options($im_options, $opt);

  release_and_barf 'Usage: imag1 ( $image, [$min, $max, $transform] )' if $#$in<0 || $#$in>3;
  $o->{Pix} = 1 unless defined($o->{Pix});
  $self->imag (@$in,$o);
  # This is not added to the state, because the imag command does that.
}


##########
# rgbi - Plot an image with 3 color planes

sub rgbi {
  unless($PGPLOT::RGB_OK) {
    print STDERR "PGPLOT rgbi called, but RGB support is not present. Using grayscale instead.\n";
    my $me = shift;
    my $in = shift;
    my $in2;

    if($in->dim(0)==3 && $in->dim(1)>3 && $in->dim(2)>3) {
      $in2 = $in->sumover;
    } else {
      $in2 = $in->mv(2,0)->sumover;
    }
    my @a = @_;
    return _imag($me,\&pgimag,2,$in2,@a);
  }

  release_and_barf("rgbi: RGB-enabled PGPLOT is not present\n")
    unless($PGPLOT::RGB_OK);

  my $me = shift;
  my @a = @_;
  my($in,$opt) = _extract_hash(@_);
  my($image) = shift @$in;
  if(UNIVERSAL::isa($image,'PDL')) {
    @dims = $image->dims;
    if($dims[0] == 3 && $dims[1] > 3 && $dims[2] > 3) {
      print "rgbi: Hmmm... Found (rgb,X,Y) [deprecated] rather than (X,Y,rgb) [approved]."
	if($PDL::debug || $PDL::verbose);
      $image = $image->mv(0,2);
    }
  }
  $opt->{DrawWedge} = 0;

  # Get rid of nan elements...
  my $im2;
  my $m = !(isfinite $image);
  if(zcheck($m)) {
    $im2 = $image;
  } else {
    $im2 = $image->copy;
    $im2->range(scalar(whichND $m)) .= 0;
  }

  _imag($me,\&pgrgbi,3,$im2,@$in,$opt);
}


######################################################################
# Here are the FITS subroutines
#
# They all use _fits_foo as a ``pre-call'' to set up the appropriate
# image transformations and plot command.
#
# by fits_imag, fits_rgbi, and fits_cont.
#
{
    my $f_im_options = undef;

    sub _fits_foo {
	my $pane = shift;
	my $cmd = shift;
	my ($in,$opt_in) = _extract_hash(@_);
	my ($pdl,@rest) = @$in;

	$opt_in = {} unless defined($opt_in);

	unless ( defined($f_im_options) ) {
	    $f_im_options = $pane->{PlotOptions}->extend({
                                                  Contours=>undef,
						  Follow=>0,
						  Labels=>undef,
						  LabelColour=>undef,
						  Missing=>undef,
						  NContours=>undef,
						  FillContours=>undef,
						  Min => undef,
						  Max => undef,
						  DrawWedge => 0,
						  Wedge => undef,
						  XRange=>undef,
						  YRange=>undef,
						  XTitle => undef,
						  YTitle => undef,
						  Title  => undef,
						  CharSize=>undef,
						  CharThick=>undef,
						  HardCH=>undef,
						  HardLW=>undef,
 					          TextThick=>undef,

						  WCS => undef,
						 });
	}

	my($opt,$u_opt) = $pane->_parse_options($f_im_options,$opt_in);
	my $hdr = $pdl->gethdr();

	# What WCS system are we using?
	# we could check that the WCS is valid here but we delegate it
	# to the _FITS_tr() routine.
	#
	my $wcs = $$u_opt{WCS} || "";

	%opt2 = %{$u_opt}; # copy options
	delete $opt2{WCS};
	$opt2{Transform} = _FITS_tr($pane,$pdl,{WCS => $wcs});

	local($_);
	foreach $_(keys %opt2){
	    delete $opt2{$_} if (m/title/i);
	}

	$opt2{Align} = 'CC' unless defined($opt2{Align});
	$opt2{DrawWedge} = 1 unless defined($opt2{DrawWedge});

	my $min  = (defined $opt->{min}) ? $opt->{min} : $pdl->min;
	my $max  = (defined $opt->{max}) ? $opt->{max} : $pdl->max;
	my $unit = $pdl->gethdr->{BUNIT} || "";
	my $rangestr = " ($min to $max $unit) ";

	# I am assuming here that CUNIT1<A-Z> is a valid keyword for
	# 'alternative' WCS mappings (DJB)
	#
	$opt2{Pix}=1.0
	    if( (!defined($opt2{Justify}) || !$opt2{Justify}) &&
		(!defined($opt2{Pix})) &&
		( $hdr->{"CUNIT1$wcs"} ?
		  ($hdr->{"CUNIT1$wcs"} eq $hdr->{"CUNIT2$wcs"}) :
		  ($hdr->{"CTYPE1$wcs"} eq $hdr->{"CTYPE2$wcs"})
		  )
		);

	my $o2 = \%opt2;

	my $cmdstr =   '$pane->' . $cmd .
	    '($pdl,' . (scalar(@rest) ? '@rest,' : '') .
	    '$o2);';

	eval $cmdstr;

        my $mkaxis = sub {
	  my ($typ,$unit) = @_;
	  our @templates = ("(arbitrary units)","%u","%t","%t (%u)");
	  $s = $templates[2 * (defined $typ) + (defined $unit && $unit !~ m/^\s+$/)];
	  $s =~ s/\%u/$unit/;
	  $s =~ s/\%t/$typ/;
	  $s;
	};

	$pane->label_axes(
			  $opt->{XTitle} ||
			  &$mkaxis($hdr->{"CTYPE1$wcs"},$hdr->{"CUNIT1$wcs"}),
			  $opt->{YTitle} ||
			  &$mkaxis($hdr->{"CTYPE2$wcs"},$hdr->{"CUNIT2$wcs"}),
			  $opt->{Title}, $opt
			  );

    } # sub: _fits_foo()

    sub fits_imag {
	my($self) = shift;
	_fits_foo($self,'imag',@_);
    }

    sub fits_rgbi {
	my($self) = shift;
	_fits_foo($self,'rgbi',@_);
    }

    sub fits_cont {
	my($self) = shift;
	_fits_foo($self,'cont',@_);
    }

    sub fits_vect {
	my($self) = shift;
	_fits_vect($self,'vect',@_);
    }

} # closure around _fits_foo and fits_XXXX routines

# Load a colour table using pgctab()

#
# Modified 7/4/02 JB - having the last colour table as a variable in here
# did not work. So it is now moved to the $self hash.
{
  # This routine doesn't really have any options at the moment, but
  # it uses the following standard variables
  my %CTAB = ();
  $CTAB{Grey}    = [ pdl([0,1],[0,1],[0,1],[0,1]) ];
  $CTAB{Igrey}   = [ pdl([0,1],[1,0],[1,0],[1,0]) ];
  $CTAB{Fire}    = [ pdl([0,0.33,0.66,1],[0,1,1,1],[0,0,1,1],[0,0,0,1]) ];
  $CTAB{Gray}    = $CTAB{Grey};	# Alias
  $CTAB{Igray}   = $CTAB{Igrey}; # Alias

  # It would be easy to add options though..
  sub _ctab_set {
    my $self = shift;
    return defined($self->{CTAB});
  }

  sub ctab {
    my $self = shift;
    my ($in, $opt)=_extract_hash(@_);


    # No arguments -- print list of tables
    if (scalar(@$in) == 0) {
      print "Available 'standard' color tables are:\n",join(",",sort keys %CTAB)
	,"\n";
      return;
    }
    # No arguments -- print list of tables
    if (scalar(@$in) == 0) {
      print "Available 'standard' color tables are:\n",join(",",sort keys %CTAB)
	,"\n";
      return;
    }

    # First indirect arg list through %CTAB
    my(@arg) = @$in;

    my($ctab, $levels, $red, $green, $blue, $contrast, $brightness, @t, $n);

    if ($#arg>=0 && !ref($arg[0])) {       # First arg is a name not an object
      # if first arg is undef or empty string, means use last CTAB.
      # preload with Grey if no prior CTAB
      $arg[0] = 'Grey' unless $arg[0] || $self->{CTAB};

      # now check if we're using the last one specified
      if ( ! $arg[0] ) {
	shift @arg;
	unshift @arg, @{$self-{CTAB}->{ctab}};
	$brightness = $self->{CTAB}->{brightness};
	$contrast = $self->{CTAB}->{contrast};
      } else {
	my $name = ucfirst(lc(shift @arg)); # My convention is $CTAB{Grey} etc...
	release_and_barf "$name is not a standard colour table" unless defined $CTAB{$name};
	unshift @arg, @{$CTAB{$name}};
      }
    }


    if ($#arg<0 || $#arg>5) {
      my @std = keys %CTAB;
      release_and_barf <<"EOD";
 Usage: ctab ( \$name, [\$contrast, $\brightness] ) # Builtin col table
	     [Builtins: @std]
	ctab ( \$ctab, [\$contrast, \$brightness] ) # $ctab is Nx4 array
	ctab ( \$levels, \$red, \$green, \$blue, [\$contrast, \$brightness] )
EOD
    }


    if ($#arg<3) {
      ($ctab, $contrast, $brightness) = @arg;
      @t = $ctab->dims; release_and_barf 'Must be a Nx4 array' if $#t != 1 || $t[1] != 4;
      $n = $t[0];
      $ctab   = float($ctab) if $ctab->get_datatype != $PDL_F;
      my $nn = $n-1;
      $levels = $ctab->(0:$nn,0:0);
      $red    = $ctab->(0:$nn,1:1);
      $green  = $ctab->(0:$nn,2:2);
      $blue   = $ctab->(0:$nn,3:3);
    } else {
      ($levels, $red, $green, $blue, $contrast, $brightness) = @arg;
      $self->_checkarg($levels,1);  $n = nelem($levels);
      for ($red,$green,$blue) {
	$self->_checkarg($_,1); release_and_barf 'Arguments must have same size' unless nelem($_) == $n;
      }
    }

    # Now load it

    $contrast   = 1   unless defined $contrast;
    $brightness = 0.5 unless defined $brightness;

    &catch_signals;

    focus( $self );

    pgctab( $levels->get_dataref, $red->get_dataref, $green->get_dataref,
	    $blue->get_dataref, $n, $contrast, $brightness );
    $self->{CTAB} = { ctab => [ $levels, $red, $green, $blue ],
	      brightness => $brightness,
	      contrast => $contrast
	    };			# Loaded
    $self->_add_to_state(\&ctab, $in, $opt);

    &release_signals;

    1;
  }

  # get information on last CTAB load
  sub ctab_info {
    my $self = shift;
    my ($in, $opt)=_extract_hash(@_);
    release_and_barf 'Usage: ctab_info( )' if $#$in> -1;

    return () unless $self->{CTAB};
    return @{$self->{CTAB}->{ctab}}, $self-{CTAB}->{contrast},
      $self->{CTAB}->{brightness};
  }
}

# display an image using pghi2d()

{

  my $hi2d_options = undef;

  sub hi2d {
    my $self = shift;
    if (!defined($hi2d_options)) {
      $hi2d_options = $self->{PlotOptions}->extend({
					       Ioff => undef,
					       Bias => undef
					      });
    }
    my ($in, $opt)=_extract_hash(@_);
    $opt = {} if !defined($opt);

    release_and_barf 'Usage: hi2d ( $image, [$x, $ioff, $bias] [, $options] )' if $#$in<0 || $#$in>3;
    my ($image, $x, $ioff, $bias) = @$in;
    $self->_checkarg($image,2);
    my($nx,$ny) = $image->dims;

    # Let us parse the options if any.
    my ($o, $u_opt) = $self->_parse_options($hi2d_options, $opt);
    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

    if (defined($x)) {
      $self->_checkarg($x,1);
      release_and_barf '$x incorrect' if nelem($x)!=$nx;
    } else {
      $x = float(sequence($nx));
    }

    # Parse for options input instead of calling convention
    $ioff = $o->{Ioff} || 1 unless defined($ioff);
    $bias = $o->{Bias} if defined($o->{Bias});

    $bias = 5*max($image)/$ny unless defined $bias;
    my $work = float(zeroes($nx));


    &catch_signals;

    $self->_save_status();
    $self->_standard_options_parser($u_opt);

    $self->initenv( 0 ,2*($nx-1), 0, 10*max($image), $opt ) unless $self->held();

    pghi2d($image->get_dataref, $nx, $ny, 1,$nx,1,$ny, $x->get_dataref, $ioff,
	   $bias, 1, $work->get_dataref);

    $self->_restore_status();
    $self->_add_to_state(\&hi2d, $in, $opt);

    &release_signals;
    1;
  }
}

# Plot a rectangle with pgrect()
sub rect {
  my $self = shift;
  my ($in, $opt)=_extract_hash(@_);
  release_and_barf 'Usage: rect ( $x1, $x2, $y1, $y2 [, $options] )' if( $#$in<0 || $#$in>3);
  my($x1,$x2,$y1,$y2) = @$in;
  $self->_checkarg($x1,1);
  $self->_checkarg($x2,1);
  $self->_checkarg($y1,1);
  $self->_checkarg($y2,1);
  my ($o, $u_opt) = $self->_parse_options($self->{PlotOptions}, ($opt || {}));
  $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

  &catch_signals;

  unless ( $self->held() ) {
      my ($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ?
	   @{$o->{XRange}} : minmax(pdl($x1->at(0),$x2->at(0)));
      my ($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ?
	   @{$o->{YRange}} : minmax(pdl($y1->at(0),$y2->at(0)));
      if ($xmin == $xmax) { $xmin -= 0.5; $xmax += 0.5; }
      if ($ymin == $ymax) { $ymin -= 0.5; $ymax += 0.5; }
    $self->initenv( $xmin, $xmax, $ymin, $ymax, $opt );
  }

  $self->_save_status();
  $self->_standard_options_parser($u_opt);

  pgrect($x1, $x2, $y1, $y2);
  $self->_restore_status();
  $self->_add_to_state(\&poly, $in, $opt);

  &release_signals;

  1;
}



# Plot a polygon with pgpoly()

sub poly {
  my $self = shift;
  my ($in, $opt)=_extract_hash(@_);
  release_and_barf 'Usage: poly ( $x, $y [, $options] )' if $#$in<0 || $#$in>2;
  my($x,$y) = @$in;
  $self->_checkarg($x,1);
  $self->_checkarg($y,1);
  my ($o, $u_opt) = $self->_parse_options($self->{PlotOptions}, $opt);
  $self->_check_move_or_erase($o->{Panel}, $o->{Erase});


  &catch_signals;

  unless ( $self->held() ) {
      my ($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ?
	   @{$o->{XRange}} : minmax($x);
      my ($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ?
	   @{$o->{YRange}} : minmax($y);
      if ($xmin == $xmax) { $xmin -= 0.5; $xmax += 0.5; }
      if ($ymin == $ymax) { $ymin -= 0.5; $ymax += 0.5; }
    $self->initenv( $xmin, $xmax, $ymin, $ymax, $opt );
  }

  $self->_save_status();
  $self->_standard_options_parser($u_opt);
  my $n = nelem($x);
  pgpoly($n, $x->get_dataref, $y->get_dataref);
  $self->_restore_status();
  $self->_add_to_state(\&poly, $in, $opt);

  &release_signals;

  1;
}

# Plot a circle using pgcirc




{
  my $circle_options = undef;

  sub circle {
    my $self = shift;
    if (!defined($circle_options)) {
      $circle_options = $self->{PlotOptions}->extend({Radius => undef,
						 XCenter => undef,
						 YCenter => undef});
    }
    my ($in, $opt)=_extract_hash(@_);
    $opt = {} if !defined($opt);
    my ($x, $y, $radius)=@$in;

    my ($o, $u_opt) = $self->_parse_options($circle_options, $opt);
    $o->{XCenter}=$x if defined($x);
    $o->{YCenter}=$y if defined($y);
    $o->{Radius} = $radius if defined($radius);

    &catch_signals;


    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

##DAL added this to properly set environment
  unless ( $self->held() ) {
      my ($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ?
	   @{$o->{XRange}} : ($x-$radius,$x+$radius);
      my ($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ?
	   @{$o->{YRange}} : ($y-$radius,$y+$radius);
    $self->initenv( $xmin, $xmax, $ymin, $ymax, $opt );
  }
##end DAL addition

    $self->_save_status();
    $self->_standard_options_parser($u_opt);
    pgcirc($o->{XCenter}, $o->{YCenter}, $o->{Radius});
    $self->_restore_status();
    $self->_add_to_state(\&circle, $in, $opt);

    &release_signals;
  }
}


my $circle_options = undef;
sub tcircle {

    my $self = shift;
    my ($in, $opt)=_extract_hash(@_);
    $self->_add_to_state(\&tcircle,$in,$opt);
    $opt = {} if !defined($opt);

    release_and_barf 'Usage tcircle ($x,$y,$r,[$options])'
	if $#$in < 0 || $#$in > 3;

    my ($x, $y, $radius)=@$in;
    $x=$x->flat;$y=$y->flat;$radius=$radius->flat;

    if (!defined($circle_options)){
      $circle_options=$self->{PlotOptions}->extend({Missing => undef});
    }

    &catch_signals;

    my $o = _thread_options($x->nelem,$opt);
    my $tmp_hold = $self->held();

    unless ( $self->held() ) {
      my ($o,$u_opt) = $self->_parse_options($circle_options,$opt);
      $self->_check_move_or_erase($o->{Panel},$o->{Erase});

    my ($ymin, $ymax, $xmin, $xmax);

    if ( defined $o->{Missing} ) {
	($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ?
	    @{$o->{YRange}} : minmax($y->where($y != $o->{Missing}));
	($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ?
	    @{$o->{XRange}} : minmax($x->where($x != $o->{Missing}));
    } else {
	($ymin, $ymax)=ref $o->{YRange} eq 'ARRAY' ? @{$o->{YRange}} :
	    (min($y-$radius),max($y+$radius));
	($xmin, $xmax)=ref $o->{XRange} eq 'ARRAY' ? @{$o->{XRange}} :
	    (min($x-$radius),max($x+$radius));
    }
      if ($xmin == $xmax) { $xmin-=0.5; $xmax +=0.5; }
      if ($ymin == $ymax) { $ymin-=0.5; $ymax +=0.5; }

    $self->initenv( $xmin, $xmax, $ymin, $ymax, $opt);
    $self->hold;
      }
    _tcircle($x,$y,$radius,PDL->sequence($x->nelem),$self,$o);
    $self->release unless $tmp_hold;

    &release_signals;

}

PDL::thread_define '_tcircle(a();b();c();ind()), NOtherPars => 2',
   PDL::over {
     my ($x,$y,$r,$ind,$self,$opt)=@_;
     $self->circle($x,$y,$r,$opt->[$ind->at(0)] || {} );
 };


# Plot an ellipse using poly.

{
  my $ell_options = undef;

  sub ellipse {
    my $self = shift;
    if (!defined($ell_options)) {
      $ell_options = $self->{PlotOptions}->extend({
					      MajorAxis=>undef,
					      MinorAxis=>undef,
					      Theta => 0.0,
					      XCenter => undef,
					      YCenter => undef,
					      NPoints => 100
						  });
      $ell_options->synonyms({Angle => 'Theta'});
    }
    my ($in, $opt)=_extract_hash(@_);
    $opt = {} unless defined $opt;
    my ($x, $y, $a, $b, $theta)=@$in;

    my $o = $ell_options->options($opt);
    $o->{XCenter}=$x if defined($x);
    $o->{YCenter}=$y if defined($y);
    $o->{MajorAxis} = $a if defined($a);
    $o->{MinorAxis} = $b if defined($b);
    $o->{Theta}=$theta if defined($theta);

    if (!defined($o->{MajorAxis}) || !defined($o->{MinorAxis}) || !defined($o->{XCenter})
       || !defined($o->{YCenter})) {
      release_and_barf "The major and minor axis and the center coordinates must be given!";
    }


    &catch_signals;

    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

    my $t = 2*$PI*sequence($o->{NPoints})/($o->{NPoints}-1);
    my ($xtmp, $ytmp) = ($o->{MajorAxis}*cos($t), $o->{MinorAxis}*sin($t));

    # Rotate the ellipse and shift it.
    my ($costheta, $sintheta)=(cos($o->{Theta}), sin($o->{Theta}));
    $x = $o->{XCenter}+$xtmp*$costheta-$ytmp*$sintheta;
    $y = $o->{YCenter}+$xtmp*$sintheta+$ytmp*$costheta;

    $self->_add_to_state(\&ellipse, $in, $opt);
    # Now turn off recording so we don't get this one twice..
    $self->turn_off_recording();
    $self->poly($x, $y, $opt);
    $self->turn_on_recording();

    &release_signals;
  }

}


{
  my $rect_opt = undef;
  sub rectangle {
    my $self = shift;
    my $usage='Usage: rectangle($xcenter, $ycenter, $xside, $yside, [, $angle, $opt])';
    if (!defined($rect_opt)) {
      # No need to use $self->{PlotOptions} here since we
      # pass control to poly below.
      $rect_opt = PDL::Options->new({XCenter => undef, YCenter => undef,
				     XSide => undef, YSide => undef,
				     Angle => 0, Side => undef});
      $rect_opt->synonyms({XCentre => 'XCenter', YCentre => 'YCenter',
			  Theta => 'Angle'});
      $rect_opt->warnonmissing(0);
    }
    my ($in, $opt)=_extract_hash(@_);
    $opt={} if !defined($opt);
    my ($xc, $yc, $xside, $yside, $angle)=@$in;
    my $o=$rect_opt->options($opt);

    $o->{XCenter}=$xc if defined($xc);
    $o->{YCenter}=$yc if defined($yc);
    $o->{XSide}=$xside if defined($xside);
    $o->{YSide}=$yside if defined($yside);
    $o->{Angle}=$angle if defined($angle);

    ##
    # Now do some error checking and checks for squares.
    ##
    if (defined($o->{XSide}) || defined($o->{YSide})) {
      # At least one of these are set - let us ignore Side.
      $o->{XSide}=$o->{YSide} if !defined($o->{XSide});
      $o->{YSide}=$o->{XSide} if !defined($o->{YSide});
    } elsif (defined($o->{Side})) {
      $o->{XSide}=$o->{Side};
      $o->{YSide}=$o->{Side};
    } else {
      print "$usage\n";
      release_and_barf 'The sides of the rectangle must be specified!';
    }

    unless (defined($o->{XCenter}) && defined($o->{YCenter})) {
      print "$usage\n";
      release_and_barf 'The center of the rectangle must be specified!';
    }

    &catch_signals;

    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

    # Ok if we got this far it is about time to do something useful,
    # namely construct the piddle that contains the sides of the rectangle.

    # We make it first parallell to the coordinate axes around origo
    # and rotate it subsequently (ala the ellipse routine above).
    my ($dx, $dy)=(0.5*$o->{XSide}, 0.5*$o->{YSide});
    my $xtmp = pdl(-$dx, $dx, $dx, -$dx, -$dx);
    my $ytmp = pdl(-$dy, -$dy, $dy, $dy, -$dy);

    my ($costheta, $sintheta)=(cos($o->{Angle}), sin($o->{Angle}));
    my $x = $o->{XCenter}+$xtmp*$costheta-$ytmp*$sintheta;
    my $y = $o->{YCenter}+$xtmp*$sintheta+$ytmp*$costheta;

    $self->_add_to_state(\&rectangle, $in, $opt);
    # Turn off recording temporarily.
    $self->turn_off_recording();
    $self->poly($x, $y, $opt);
    $self->turn_on_recording();

    &release_signals;
  }
}


# display a vector map of 2 images using pgvect()

{
  my $vect_options = undef;

  sub vect {
    my $self = shift;
    if (!defined($vect_options)) {
      $vect_options = $self->{PlotOptions}->extend({
					       Scale => 0,
					       Position => 0,
					       Missing => undef
					      });
      $vect_options->add_synonym({Pos => 'Position'});
    }
    my ($in, $opt)=_extract_hash(@_);
    release_and_barf 'Usage: vect ( $a, $b, [$scale, $pos, $transform, $misval] )' if $#$in<1 || $#$in>5;
    my ($a, $b, $scale, $pos, $tr, $misval) = @$in;
    $self->_checkarg($a,2); $self->_checkarg($b,2);
    my($nx,$ny) = $a->dims;
    my($n1,$n2) = $b->dims;
    release_and_barf 'Dimensions of $a and $b must be the same' unless $n1==$nx && $n2==$ny;

    my ($o, $u_opt) = $self->_parse_options($vect_options, $opt);
    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});

    # Parse for options input instead of calling convention
    $scale = $o->{Scale} if exists($u_opt->{Scale});
    $pos = $o->{Position} if exists($u_opt->{Scale});
    $tr = $o->{Transform} if exists($u_opt->{Transform});
    $misval = $o->{Missing} if exists($u_opt->{Missing});
    #What if there's no Missing option supplied and one of the input piddles
    #contain zero? Then that location will have no arrow, instead of a
    #horizontal or vertical line. So define $misval, but make it meaningless:
    $misval = 1 + $a->glue(0,$b)->flat->maximum unless defined $misval; #DAL added 02-Jan-2006

    $scale = 0 unless defined $scale;
    $pos   = 0 unless defined $pos;

    if (defined($tr)) {
      $self->_checkarg($tr,1);
      release_and_barf '$transform incorrect' if nelem($tr)!=6;
    } else {
      $tr = float [0,1,0, 0,0,1];
    }
    $tr = $self->CtoF77coords($tr);

    &catch_signals;

    $self->initenv( 0, $nx-1, 0, $ny-1, $opt ) unless $self->held();
    print "Vectoring $nx x $ny images ...\n" if $PDL::verbose;

    $self->_save_status();
    $self->_standard_options_parser($u_opt); # For arrowtype and arrowhead
    pgvect( $a->get_dataref, $b->get_dataref, $nx,$ny,1,$nx,1,$ny, $scale, $pos,
	    $tr->get_dataref, $misval);
    $self->_restore_status();
    $self->_add_to_state(\&vect, $in, $opt);

    &release_signals;
    1;
  }
}

# ############ Text routines #############



{
  # Do not create this object unless necessary.
  my $text_options = undef;

  sub text {
    my $self = shift;

    if (!defined($text_options)) {
      # This is the first time this routine is called so we
      # have to initialise the options object.
      $text_options = $self->{PlotOptions}->extend({
					       Angle => 0.0,
					       Justification => 0.0,
					       Text => '',
					       XPos => undef,
					       YPos => undef
					      });
      $text_options->add_synonym({Justify => 'Justification'});
      $text_options->add_synonym({Bg => 'BackgroundColour'});
    }

    # Extract the options hash and separate it from the other input
    my ($in, $opt)=_extract_hash(@_);
    $opt = {} if !defined($opt);
    release_and_barf 'Usage: text ($text, $x, $y, [,$opt])' if
      (!defined($opt) && $#$in < 2) || ($#$in > 3) || ($#$in < 0);
    my ($text, $x, $y)=@$in;

    # Next - parse options
    my ($o, $u_opt) = $self->_parse_options($text_options, $opt);

    # Check for change of panel or request to erase the panel
    # (Commented out by CED 21-Jun-2002, because this seems
    #   to erase too much -- e.g. it's hard to scribble on a line plot!)
    #    $self->_check_move_or_erase($o->{Panel}, $o->{Erase});
    # Parse standard options such as colour

    $self->_save_status();

    $self->_standard_options_parser($u_opt);

    # Finally do what the routine needs to do.
    $o->{Text}=$text if defined($text);
    $o->{XPos}=$x if defined($x);
    $o->{YPos}=$y if defined($y);
    release_and_barf "text: You must specify the X-position!\n" if !defined($o->{XPos});
    release_and_barf "text: You must specify the Y-position!\n" if !defined($o->{YPos});


    &catch_signals;

    # Added support for different background colours..
    # 2/10/01 JB - To avoid -w noise we use a reg-exp..

    if ($o->{BackgroundColour} !~ m/^-\d+$/) {
      $self->_set_colour($o->{BackgroundColour}, 1);
    }

    # what width do we use?
    # - things are somewhat confused since we have
    #   LineWidth and TextWidth (a recent addition)
    #   and LineWidth is set by _setup_window() - so
    #   _standard_options_parser() uses it - but
    #   TextWidth isn't.
    #
    # so for now we over-ride the _standard_options_parser
    # setting if TextWidth exists
    # [DJB 2002 Aug 08]
    my $old_lw;
    if ( defined($o->{TextWidth}) ) {
	pgqlw($old_lw);
	pgslw($o->{TextWidth});
    }

    my $old_bg;

    pgptxt($o->{XPos}, $o->{YPos}, $o->{Angle}, $o->{Justification},
	   $o->{Text});

    pgslw($old_lw) if defined $old_lw;
#
    $self->_restore_status();
    $self->_add_to_state(\&text, $in, $opt);

    &release_signals;

    1;
  }
}



{
  my $legend_options = undef;

  sub legend {

    my $self = shift;
    if (!defined($legend_options)) {
      $legend_options = $self->{PlotOptions}->extend({
						 Text	   => undef,
						 XPos	   => undef,
						 YPos	   => undef,
						 Width     => 'Automatic',
						 Height    => 'Automatic',
						 TextFraction  => 0.5,
						 TextShift => 0.1,
						 VertSpace => 0
						     });
      # should this be synonyms() or add_synonym() ? DJB 09 Apr 03
      $legend_options->add_synonym({
				    VSpace => 'VertSpace',
				    Fraction => 'TextFraction',
				    Bg => 'BackgroundColour',
				   });
    }
    my ($in, $opt)=_extract_hash(@_);
    $opt = {} if !defined($opt);
    my ($o, $u_opt) = $self->_parse_options($legend_options, $opt);

    #
    # In this function there are several options that we do not want
    # parsed by the standard options parsers so we deal with these
    # here - we translate the linestyles, symbols and colours below
    #
    my %myopt;
    foreach my $optname ( qw( LineStyle LineWidth Colour Symbol ) ) {
	my $tmp = $u_opt->{$optname};
	$myopt{lc($optname)} = ref($tmp) eq "ARRAY" ? $tmp : [$tmp];
	delete $u_opt->{$optname};
    }

    my ($text, $x, $y, $width)=@$in;
    $o->{Text} = $text if defined($text);
    $o->{XPos} = $x if defined($x);
    $o->{YPos} = $y if defined($y);
    $o->{Width} = $width if defined($width);

    # We could keep accessing $o but this is more succint.
    # [In the following we want to deal with an array of text.]
    $text = $o->{Text};
    $text = [$text] unless ref($text) eq 'ARRAY';
    my $n_lines = $#$text+1;

    if (!defined($o->{XPos}) || !defined($o->{YPos}) || !defined($o->{Text})) {
      release_and_barf 'Usage: legend $text, $x, $y [,$width, $opt] (styles are given in $opt)';
    }

    &catch_signals;

    $self->_save_status();

    $self->_standard_options_parser($u_opt); # Set font, charsize, colour etc.

    # Ok, introductory stuff has been done, lets get down to the gritty
    # details. First let us save the current character size.
    pgqch(my $chsz);

    ## Now, set the background colour of the text before getting further.
    ## Added 2/10/01 - JB - test as a regexp to avoid -w noise.
    if ($o->{BackgroundColour} !~ m/^-?\d+$/) {
      # Do this unless a negative integer..
      $self->_set_colour($o->{BackgroundColour}, 1);
    }

    # The size of the legend can be specified by giving the width or the
    # height so to calculate the required text size we need to find the
    # minimum required (since text in PGPLOT cannot have variable width
    # and height.
    # Get the window size.
    pgqwin( my $xmin, my $xmax, my $ymin, my $ymax );

    # note: VertSpace is assumed to be a scalar
    my $vfactor = 1.0 + $o->{VertSpace};

    my $required_charsize=$chsz*9000;

    if ($o->{Width} eq 'Automatic' && $o->{Height} eq 'Automatic') {
      # Ok - we just continue with the given character size.
      $required_charsize = $chsz;
      # We still need to calculate the width and height of the legend
      # though. Fixed 20/3/01

      my $t_width = -1; # Very short text...
      my $t_height = -1; # And very low
      foreach my $t (@$text) {
	# Find the bounding box of left-justified text
	pgqtxt($xmin, $ymin, 0.0, 0.0, $t, my $xbox, my $ybox);
	my $dx = $$xbox[2] - $$xbox[0];
	my $dy = $$ybox[2] - $$ybox[0];
	$t_width  = $dx if $dx > $t_width;
	$t_height = $dy if $dy > $t_height;
      }

      $o->{Width} = $t_width/$o->{TextFraction};
      # we include an optional vspace (which is given as a fraction of the
      # height of a line)
      $o->{Height} = $t_height*$vfactor*$n_lines; # The height of all lines..
    } else {
      # We have some constraint on the size.
      my ($win_width, $win_height)=($xmax-$xmin, $ymax-$ymin);

      # If either the width or the height is set to automatic we set
      # the width/height here to be 2 times the width/height of the
      # plot window - thus ensuring not too large a text size should the
      # user have done something stupid, but still large enough to
      # detect an error.
      $o->{Width}  = 2*$win_width/$o->{TextFraction} if $o->{Width} eq 'Automatic';
      $o->{Height} = 2*$win_height if $o->{Height} eq 'Automatic';

      foreach my $t (@$text) {
	# Find the bounding box of left-justified text
	pgqtxt($xmin, $ymin, 0.0, 0.0, $t, my $xbox, my $ybox);
	my $dx = $$xbox[2] - $$xbox[0];
	my $dy = $$ybox[2] - $$ybox[0];

	# Find what charactersize is required to fit the height
	# (accounting for vspace) or fraction*width:
	my $t_width  = $o->{TextFraction}*$o->{Width}/$dx;
	my $t_height = $o->{Height}/$vfactor/$n_lines/$dy; # XXX is $vfactor==(1+VertSpace) correct?

	$t_chsz = ($t_width < $t_height ? $t_width*$chsz : $t_height*$chsz);

	$required_charsize = $t_chsz if $t_chsz < $required_charsize;

	pgsch($required_charsize*$chsz); # Since we measured relative to $chsz
      }
    }

    #
    # Ok, $required_charsize should now contain the optimal size for the
    # text. The next step is to create the legend. We can set linestyle,
    # linewidth, colour and symbol for each of these texts.
    #
    my ($xpos, $ypos) = ($o->{XPos}, $o->{YPos});
    my ($xstart, $xend)=($o->{XPos}+$o->{TextFraction}*$o->{Width}+
			 $o->{TextShift}*$o->{Width}, $o->{XPos}+$o->{Width});
    my $xmid = 0.5 * ($xstart + $xend);

    # step size in y
    my $ystep = $o->{Height} / $n_lines;

    # store current settings
    pgqci(my $col);
    pgqls(my $ls);
    pgqlw(my $lw);

    foreach (my $i=0; $i<$n_lines; $i++) {
      $self->text($text->[$i], $xpos, $ypos);
      # Since the parsing of options does not go down array references
      # we need to create a temporary PDL::Options object here to do the
      # parsing..
      my $t_o = $self->{PlotOptions}->options({
					Symbol => $myopt{symbol}[$i],
					LineStyle => $myopt{linestyle}[$i],
					LineWidth => $myopt{linewidth}[$i],
					Colour => $myopt{colour}[$i],
				      });

      $self->_set_colour($t_o->{Colour}) if defined($myopt{colour}[$i]);

      # Use the following to get the lines/symbols centered on the
      # text.
      pgqtxt($xpos, $ypos, 0.0, 0.0, $text->[$i], my $xbox, my $ybox);
      my $ymid = 0.5 * ($$ybox[2] + $$ybox[0]);

      if (defined($myopt{symbol}[$i])) {

	pgpt(1, $xmid, $ymid, $t_o->{Symbol});

      } else {
	pgsls($t_o->{LineStyle}) if defined $myopt{linestyle}[$i];
	pgslw($t_o->{LineWidth}) if defined $myopt{linewidth}[$i];
	pgline(2, [$xstart, $xend], [$ymid, $ymid]);
      }

      # reset colour, line style & width after each line
      $self->_set_colour($col);
      pgsls($ls);
      pgslw($lw);

      $ypos -= $ystep;
    }


    $self->_restore_status();
    $self->_add_to_state(\&legend, $in, $opt);

    &release_signals;

  }

}





############## Cursor routine ##################



{
  $cursor_options = undef;
  sub cursor {

    my $self = shift;
    # Let us check if this is a hardcopy device, in which case we will return
    # with a warning and undefined values.
    my ($hcopy, $len);
    pgask(0);
    pgqinf("HARDCOPY",$hcopy,$len);
    if ($hcopy eq 'YES') {
      warn "cursor called on a hardcopy device - returning!\n";
      return (undef, undef, undef, undef, undef);
    }

    if (!defined($cursor_options)) {
      $cursor_options = PDL::Options->new(
					  {
					   'XRef' => undef,
					   'YRef' => undef,
					   'Type' => 0
					  });
      $cursor_options->translation({Type=>{
				   'Default'                  => 0,
				   'RadialLine'		      => 1,
				   'Rectangle'		      => 2,
				   'TwoHorizontalLines'	      => 3,
				   'TwoVerticalLines'	      => 4,
				   'HorizontalLine'	      => 5,
				   'VerticalLine'	      => 6,
				   'CrossHair'		      => 7
				  }});
    }

    my ($opt)=@_;

    $opt = {} unless defined($opt);
    my $place_cursor=1; # Since X&Y might be uninitialised.
    my $o = $cursor_options->options($opt);

    my ($x, $y, $ch);

    &catch_signals;

    # The window needs to be focussed before using the cursor commands.
    # Added 08/08/01 by JB after bug report from Brad Holden.
    $self->focus();

    if ($o->{Type} eq 'Rectangle' && !defined($o->{XRef})) {
      #
      # We use pgcurs to get a first position.
      #
      print "Please select a corner of the rectangle\n";
      pgcurs($x, $y, $ch);
      $o->{XRef}=$x;
      $o->{YRef}=$y;
    }

    if ($o->{Type} > 7 || $o->{Type} < 0) {
      print "Unknown type of cursor $$o{Type} - using Default\n";
      $o->{Type}=0;
    }
    my ($xmin, $xmax, $ymax, $ymin);
    pgqwin($xmin, $xmax, $ymin, $ymax);

    $x = $o->{XRef} if defined($o->{XRef});
    $y = $o->{YRef} if defined($o->{YRef});

    $x = 0.5*($xmin+$xmax) if !defined($x);
    $y = 0.5*($ymin+$ymax) if !defined($y);

    my ($got_xref, $got_yref)=(defined($o->{XRef}), defined($o->{YRef}));
    if (!$got_xref || !$got_yref) {
      # There is a little bit of gritty error-checking
      # for the users convenience here.
      if ($o->{Type}==1 || $o->{Type}==2) {
	release_and_barf "When specifying $$o{Type} as cursor you must specify the reference point";
      } elsif ($o->{Type}==3 && !$got_yref) {
	release_and_barf "When specifying two horizontal lines you must specify the Y-reference";
      } elsif ($o->{Type}==4 && !$got_xref ) {
	release_and_barf  "When specifying two vertical lines you must specify the X-reference";
      }

      # Ok so we have some valid combination of type and reference point.
      $o->{XRef}=$xmin if !$got_xref;
      $o->{YRef}=$ymin if !$got_yref;

    }


    $ch = ''; # To silence -w
    my $istat = pgband($o->{Type}, $place_cursor, $o->{XRef},
		       $o->{YRef}, $x, $y, $ch);

    $self->_add_to_state(\&cursor, [], $opt);

    &release_signals;
    return ($x, $y, $ch, $o->{XRef}, $o->{YRef});

  }
}


=head1 INTERNAL

The coding tries to follow reasonable standards, so that all functions
starting with an underscore should be considered as internal and should
not be called from outside the package. In addition most routines have
a set of options. These are encapsulated and are not accessible outside
the routine. This is to avoid collisions between different variables.


=head1 AUTHOR

Karl Glazebrook [kgb@aaoepp.aao.gov.au] modified by Jarle Brinchmann
(jarle@astro.ox.ac.uk) who is also responsible for the OO interface,
docs mangled by Tuomas J. Lukka (lukka@fas.harvard.edu) and
Christian Soeller (c.soeller@auckland.ac.nz). Further contributions and
bugfixes from Kaj Wiik, Doug Burke, Craig DeForest, and many others.

All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation under certain
conditions. For details, see the file COPYING in the PDL
distribution. If this file is separated from the PDL distribution,
the copyright notice should be included in the file.

=cut

#

1;

__DATA__