The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=DragonCurve --lines --scale=20
# math-image --path=DragonCurve --all --scale=10
# math-image --path=DragonCurve --output=numbers_dash
#
# math-image --wx --path=DragonCurve,arms=4 --expression='i<16384?i:0'


package Math::PlanePath::DragonCurve;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 125;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_up_pow',
  'bit_split_lowtohigh',
  'digit_split_lowtohigh';
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::DragonMidpoint;

# uncomment this to run the ### lines
# use Smart::Comments;



use constant n_start => 0;

use constant parameter_info_array => [ { name      => 'arms',
                                         share_key => 'arms_4',
                                         display   => 'Arms',
                                         type      => 'integer',
                                         minimum   => 1,
                                         maximum   => 4,
                                         default   => 1,
                                         width     => 1,
                                         description => 'Arms',
                                       } ];

{
  my @x_negative_at_n = (undef, 5,5,5,6);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef, 14,11,8,7);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}
{
  my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 5, 5, 5, 3);
  sub _UNDOCUMENTED__dxdy_list_at_n {
    my ($self) = @_;
    return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
  }
}

use constant turn_any_straight => 0; # never straight


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(4, $self->{'arms'} || 1));
  return $self;
}

{
  # sub state_string {
  #   my ($state) = @_;
  #   my $digit = $state & 3;  $state >>= 2;
  #   my $rot = $state & 3;  $state >>= 2;
  #   my $rev = $state & 1;  $state >>= 1;
  #   return "rot=$rot rev=$rev (digit=$digit)";
  # }

  # generated by tools/dragon-curve-table.pl
  # next_state length 32
  my @next_state = (12,16, 4,16,  0,20, 8,20,  4,24,12,24,  8,28, 0,28,
                    0,20, 0,28,  4,24, 4,16,  8,28, 8,20, 12,16,12,24);
  my @digit_to_x = ( 0, 0, 1, 1,  0, 1, 1, 0,  0, 0,-1,-1,  0,-1,-1, 0,
                     0, 1, 1, 2,  0, 0,-1,-1,  0,-1,-1,-2,  0, 0, 1, 1);
  my @digit_to_y = ( 0,-1,-1, 0,  0, 0, 1, 1,  0, 1, 1, 0,  0, 0,-1,-1,
                     0, 0, 1, 1,  0, 1, 1, 2,  0, 0,-1,-1,  0,-1,-1,-2);
  my @digit_to_dxdy = ( 1, 0,undef,undef,  0, 1,undef,undef, -1, 0,undef,undef,  0,-1,undef,undef,
                        1, 0,undef,undef,  0, 1,undef,undef, -1, 0,undef,undef,  0,-1);

  sub n_to_xy {
    my ($self, $n) = @_;
    ### DragonCurve n_to_xy(): $n

    if ($n < 0) { return; }
    if (is_infinite($n)) { return ($n, $n); }

    my $int = int($n);      # integer part
    $n -= $int;             # $n = fraction part
    my $zero = ($int * 0);  # inherit bignum 0

    my $arm = _divrem_mutate ($int, $self->{'arms'});
    my @digits = digit_split_lowtohigh($int,4);
    ### @digits

    # initial state from rotation by arm and number of digits
    my $state = ((scalar(@digits) + $arm) & 3) << 2;

    my $len = (2+$zero) ** $#digits;
    my $x = $zero;
    my $y = $zero;
    foreach my $digit (reverse @digits) {  # high to low
      ### at: "x=$x,y=$y  len=$len digit=$digit state=$state"
      # ### state is: state_string($state)

      $state += $digit;
      $x += $len * $digit_to_x[$state];
      $y += $len * $digit_to_y[$state];
      $state = $next_state[$state];
      $len /= 2;
    }

    ### final: "x=$x y=$y  state=$state"
    # ### state is: state_string($state)
    ### final: "frac dx=$digit_to_dxdy[$state], dy=$digit_to_dxdy[$state+1]"

    return ($n * $digit_to_dxdy[$state] + $x,
            $n * $digit_to_dxdy[$state+1] + $y);
  }
}


{
  # generated by tools/dragon-curve-dxdy.pl
  # next_state length 32
  my @next_state = ( 0, 6,20, 2,  4,10,24, 6,  8,14,28,10, 12, 2,16,14,
                     0,22,20,18,  4,26,24,22,  8,30,28,26, 12,18,16,30);
  my @state_to_dxdy = ( 1, 0,-1, 1,  0, 1,-1,-1, -1, 0, 1,-1,  0,-1, 1, 1,
                        1, 0,-1,-1,  0, 1, 1,-1, -1, 0, 1, 1,  0,-1,-1, 1);

  sub n_to_dxdy {
    my ($self, $n) = @_;
    ### n_to_dxdy(): $n

    if ($n < 0) { return; }
    if (is_infinite($n)) { return ($n, $n); }

    my $int = int($n);
    $n -= $int;  # $n fraction part
    ### $int
    ### $n

    my $state = 4 * _divrem_mutate ($int, $self->{'arms'});
    ### arm as initial state: $state

    foreach my $bit (reverse bit_split_lowtohigh($int)) {  # high to low
      $state = $next_state[$state + $bit];
    }
    $state &= 0x1C;  # mask out "prevbit" from state, leaving state==0 mod 4

    ### final state: $state
    ### dx: $state_to_dxdy[$state]
    ### dy: $state_to_dxdy[$state+1],
    ### frac dx: $state_to_dxdy[$state+2],
    ### frac dy: $state_to_dxdy[$state+3],

    return ($state_to_dxdy[$state]   + $n * $state_to_dxdy[$state+2],
            $state_to_dxdy[$state+1] + $n * $state_to_dxdy[$state+3]);
  }
}

# point N=2^(2k) at XorY=+/-2^k  radius 2^k
#       N=2^(2k-1) at X=Y=+/-2^(k-1) radius sqrt(2)*2^(k-1)
# radius = sqrt(2^level)
# R(l)-R(l-1) = sqrt(2^level) - sqrt(2^(level-1))
#             = sqrt(2^level) * (1 - 1/sqrt(2))
# about 0.29289
#
my @try_dx = (0,0,-1,-1);
my @try_dy = (0,1,1,0);

sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x, $y) = @_;
  ### DragonCurve xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  if (is_infinite($x)) {
    return $x;  # infinity
  }
  if (is_infinite($y)) {
    return $y;  # infinity
  }

  if ($x == 0 && $y == 0) {
    return (0 .. $self->arms_count - 1);
  }

  my @n_list;
  my $xm = $x+$y;  # rotate -45 and mul sqrt(2)
  my $ym = $y-$x;
  foreach my $dx (0,-1) {
    foreach my $dy (0,1) {
      my $t = $self->Math::PlanePath::DragonMidpoint::xy_to_n
        ($xm+$dx, $ym+$dy);
      next unless defined $t;

      my ($tx,$ty) = $self->n_to_xy($t)
        or next;

      if ($tx == $x && $ty == $y) {
        ### found: $t
        if (@n_list && $t < $n_list[0]) {
          unshift @n_list, $t;
        } else {
          push @n_list, $t;
        }
        if (@n_list == 2) {
          return @n_list;
        }
      }
    }
  }
  return @n_list;
}

#------------------------------------------------------------------------------

sub xy_is_visited {
  my ($self, $x, $y) = @_;

  my $arms_count = $self->{'arms'};
  if ($arms_count == 4) {
    # yes, whole plane visited
    return 1;
  }

  my $xm = $x+$y;
  my $ym = $y-$x;
  {
    my $arm = Math::PlanePath::DragonMidpoint::_xy_to_arm($xm,$ym);
    if ($arm < $arms_count) {
      # yes, segment $xm,$ym is on the desired arms
      return 1;
    }
    if ($arm == 2 && $arms_count == 1) {
      # no, segment $xm,$ym is on arm 2, which means its opposite is only on
      # arm 1,2,3 not arm 0 so arms_count==1 cannot be visited
      return 0;
    }
  }
  return (Math::PlanePath::DragonMidpoint::_xy_to_arm($xm-1,$ym+1)
          < $arms_count);
}


#------------------------------------------------------------------------------

# f = (1 - 1/sqrt(2) = .292
# 1/f = 3.41
# N = 2^level
# Rend = sqrt(2)^level
# Rmin = Rend / 2  maybe
# Rmin^2 = (2^level)/4
# N = 4 * Rmin^2
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### DragonCurve rect_to_n_range(): "$x1,$y1  $x2,$y2"
  my $xmax = int(max(abs($x1),abs($x2)));
  my $ymax = int(max(abs($y1),abs($y2)));
  return (0,
          $self->{'arms'} * ($xmax*$xmax + $ymax*$ymax + 1) * 7);
}

# Not quite right yet ...
#
# sub rect_to_n_range {
#   my ($self, $x1,$y1, $x2,$y2) = @_;
#   ### DragonCurve rect_to_n_range(): "$x1,$y1  $x2,$y2"
#
#
#    my ($length, $level_limit) = round_down_pow
#      ((max(abs($x1),abs($x2))**2 + max(abs($y1),abs($y2))**2 + 1) * 7,
#       2);
#    $level_limit += 2;
#    ### $level_limit
#
#    if (is_infinite($level_limit)) {
#      return ($level_limit,$level_limit);
#    }
#
#    $x1 = round_nearest ($x1);
#    $y1 = round_nearest ($y1);
#    $x2 = round_nearest ($x2);
#    $y2 = round_nearest ($y2);
#    ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
#    ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
#    ### sorted range: "$x1,$y1  $x2,$y2"
#
#
#    my @xend = (0, 1);
#    my @yend = (0, 0);
#    my @xmin = (0, 0);
#    my @xmax = (0, 1);
#    my @ymin = (0, 0);
#    my @ymax = (0, 0);
#    my @sidemax = (0, 1);
#    my $extend = sub {
#      my ($i) = @_;
#      ### extend(): $i
#      while ($i >= $#xend) {
#        ### extend from: $#xend
#        my $xend = $xend[-1];
#        my $yend = $yend[-1];
#        ($xend,$yend) = ($xend-$yend,  # rotate +45
#                         $xend+$yend);
#        push @xend, $xend;
#        push @yend, $yend;
#        my $xmax = $xmax[-1];
#        my $xmin = $xmin[-1];
#        my $ymax = $ymax[-1];
#        my $ymin = $ymin[-1];
#        ### assert: $xmax >= $xmin
#        ### assert: $ymax >= $ymin
#
#        #    ### at: "end=$xend,$yend   $xmin..$xmax  $ymin..$ymax"
#        push @xmax, max($xmax, $xend + $ymax);
#        push @xmin, min($xmin, $xend + $ymin);
#
#        push @ymax, max($ymax, $yend - $xmin);
#        push @ymin, min($ymin, $yend - $xmax);
#
#        push @sidemax, max ($xmax[-1], -$xmin[-1],
#                             $ymax[-1], -$ymin[-1],
#                             abs($xend),
#                             abs($yend));
#      }
#      ### @sidemax
#    };
#
#    my $rect_dist = sub {
#      my ($x,$y) = @_;
#      my $xd = ($x < $x1 ? $x1 - $x
#                : $x > $x2 ? $x - $x2
#                : 0);
#      my $yd = ($y < $y1 ? $y1 - $y
#                : $y > $y2 ? $y - $y2
#                : 0);
#      return max($xd,$yd);
#    };
#
#    my $arms = $self->{'arms'};
#    ### $arms
#    my $n_lo;
#    {
#      my $top = 0;
#      for (;;) {
#      ARM_LO: foreach my $arm (0 .. $arms-1) {
#          my $i = 0;
#          my @digits;
#          if ($top > 0) {
#            @digits = ((0)x($top-1), 1);
#          } else {
#            @digits = (0);
#          }
#
#          for (;;) {
#            my $n = 0;
#            foreach my $digit (reverse @digits) { # high to low
#              $n = 2*$n + $digit;
#            }
#            $n = $n*$arms + $arm;
#            my ($nx,$ny) = $self->n_to_xy($n);
#            my $nh = &$rect_dist ($nx,$ny);
#
#            ### lo consider: "i=$i  digits=".join(',',reverse @digits)."  is n=$n xy=$nx,$ny nh=$nh"
#
#            if ($i == 0 && $nh == 0) {
#              ### lo found inside: $n
#              if (! defined $n_lo || $n < $n_lo) {
#                $n_lo = $n;
#              }
#              next ARM_LO;
#            }
#
#            if ($i == 0 || $nh > $sidemax[$i+2]) {
#              ### too far away: "nxy=$nx,$ny   nh=$nh vs ".$sidemax[$i+2]." at i=$i"
#
#              while (++$digits[$i] > 1) {
#                $digits[$i] = 0;
#                if (++$i <= $top) {
#                  ### backtrack up ...
#                } else {
#                  ### not found within this top and arm, next arm ...
#                  next ARM_LO;
#                }
#              }
#            } else {
#              ### lo descend ...
#              ### assert: $i > 0
#              $i--;
#              $digits[$i] = 0;
#            }
#          }
#        }
#
#        # if an $n_lo was found on any arm within this $top then done
#        if (defined $n_lo) {
#          last;
#        }
#
#        ### lo extend top ...
#        if (++$top > $level_limit) {
#          ### nothing below level limit ...
#          return (1,0);
#        }
#        &$extend($top+3);
#      }
#    }
#
#    my $n_hi = 0;
#   ARM_HI: foreach my $arm (reverse 0 .. $arms-1) {
#      &$extend($level_limit+2);
#      my @digits = ((1) x $level_limit);
#      my $i = $#digits;
#      for (;;) {
#        my $n = 0;
#        foreach my $digit (reverse @digits) { # high to low
#          $n = 2*$n + $digit;
#        }
#
#        $n = $n*$arms + $arm;
#        my ($nx,$ny) = $self->n_to_xy($n);
#        my $nh = &$rect_dist ($nx,$ny);
#
#        ### hi consider: "arm=$arm  i=$i  digits=".join(',',reverse @digits)."  is n=$n xy=$nx,$ny nh=$nh"
#
#        if ($i == 0 && $nh == 0) {
#          ### hi found inside: $n
#          if ($n > $n_hi) {
#            $n_hi = $n;
#            next ARM_HI;
#          }
#        }
#
#        if ($i == 0 || $nh > $sidemax[$i+2]) {
#          ### too far away: "$nx,$ny   nh=$nh vs ".$sidemax[$i+2]." at i=$i"
#
#          while (--$digits[$i] < 0) {
#            $digits[$i] = 1;
#            if (++$i < $level_limit) {
#              ### hi backtrack up ...
#            } else {
#              ### hi nothing within level limit for this arm ...
#              next ARM_HI;
#            }
#          }
#
#        } else {
#          ### hi descend
#          ### assert: $i > 0
#          $i--;
#          $digits[$i] = 1;
#        }
#      }
#    }
#
#    if ($n_hi == 0) {
#      ### oops, lo found but hi not found
#      $n_hi = $n_lo;
#    }
#
#    return ($n_lo, $n_hi);
# }


#------------------------------------------------------------------------------
# level ranges

#           arms=1       arms=2      arms=4
# level 0  0..1 = 2    0..3  = 4    0..7  = 8
# level 1  0..2 = 3    0..5  = 6    0..11 = 12
# level 2  0..4 = 5    0..9  = 10   0..19 = 20
# level 3  0..8 = 9    0..17 = 18   0..35 = 36
#            2^k       2*2^k+1      4*2^k+3 
#
sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, (2**$level + 1) * $self->{'arms'} - 1);
}
# 0 .. 2^level
# -1 .. 2^level-1
# level = round_up_pow(N)
# eg N=13 -> 2^4=16 level=4
#
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  _divrem_mutate ($n, $self->{'arms'});
  my ($pow, $exp) = round_up_pow ($n, 2);
  return $exp;
}

#------------------------------------------------------------------------------

{
  my @_UNDOCUMENTED_level_to_left_line_boundary = (1,2,4);
  sub _UNDOCUMENTED_level_to_left_line_boundary {
    my ($self, $level) = @_;
    if ($level < 0) { return undef; }
    if ($level <= 2) { return $_UNDOCUMENTED_level_to_left_line_boundary[$level]; }
    if (is_infinite($level)) { return $level; }

    my $l0 = 2;
    my $l1 = 4;
    my $l2 = 8;
    foreach (4 .. $level) {
      ($l2,$l1,$l0) = ($l2 + 2*$l0, $l2, $l1);
    }
    return $l2;
  }
}

{
  my @level_to_right_line_boundary = (1,2,4,8,undef);
  sub _UNDOCUMENTED_level_to_right_line_boundary {
    my ($self, $level) = @_;
    if ($level < 0) { return undef; }
    if ($level <= 3) { return $level_to_right_line_boundary[$level]; }
    if (is_infinite($level)) { return $level; }

    my $r0 =  2;
    my $r1 =  4;
    my $r2 =  8;
    my $r3 = 16;
    foreach (5 .. $level) {
      ($r3,$r2,$r1,$r0) = (2*$r3 - $r2 + 2*$r1 - 2*$r0,  $r3, $r2, $r1);
    }
    return $r3;
  }
}
sub _UNDOCUMENTED_level_to_line_boundary {
  my ($self, $level) = @_;
  if ($level < 0) { return undef; }
  return $self->_UNDOCUMENTED_level_to_right_line_boundary($level+1);
}

sub _UNDOCUMENTED_level_to_u_left_line_boundary {
  my ($self, $level) = @_;
  if ($level < 0) { return undef; }
  return ($level == 0 ? 3
          : $self->_UNDOCUMENTED_level_to_right_line_boundary($level) + 4);
}
sub _UNDOCUMENTED_level_to_u_right_line_boundary {
  my ($self, $level) = @_;
  if ($level < 0) { return undef; }
  return ($self->_UNDOCUMENTED_level_to_right_line_boundary($level)
          + $self->_UNDOCUMENTED_level_to_right_line_boundary($level+1));
}
sub _UNDOCUMENTED_level_to_u_line_boundary {
  my ($self, $level) = @_;
  if ($level < 0) { return undef; }
  return ($self->_UNDOCUMENTED_level_to_u_left_line_boundary($level)
          + $self->_UNDOCUMENTED_level_to_u_right_line_boundary($level));
}

sub _UNDOCUMENTED_level_to_enclosed_area {
  my ($self, $level) = @_;
  # A[k] = 2^(k-1) - B[k]/4
  if ($level < 0) { return undef; }
  if ($level == 0) { return 0; } # avoid 2**(-1)
  return 2**($level-1) - $self->_UNDOCUMENTED_level_to_line_boundary($level) / 4;
}
*_UNDOCUMENTED_level_to_doubled_points = \&_UNDOCUMENTED_level_to_enclosed_area;

{
  my @_UNDOCUMENTED_level_to_single_points = (2,3,5);
  sub _UNDOCUMENTED_level_to_single_points {
    my ($self, $level) = @_;
    if ($level < 0) { return undef; }
    if ($level <= 2) { return $_UNDOCUMENTED_level_to_single_points[$level]; }
    if (is_infinite($level)) { return $level; }

    my $l0 = 3;
    my $l1 = 5;
    my $l2 = 9;
    foreach (4 .. $level) {
      ($l2,$l1,$l0) = ($l2 + 2*$l0, $l2, $l1);
    }
    return $l2;
  }
}

{
  my @_UNDOCUMENTED_level_to_enclosed_area_join = (0,0,0,1);
  sub _UNDOCUMENTED_level_to_enclosed_area_join {
    my ($self, $level) = @_;
    if ($level < 0) { return undef; }
    if ($level <= 3) { return $_UNDOCUMENTED_level_to_enclosed_area_join[$level]; }
    if (is_infinite($level)) { return $level; }

    my ($j0,$j1,$j2,$j3) = @_UNDOCUMENTED_level_to_enclosed_area_join;
    $j3 += $level*0;
    foreach (4 .. $level) {
      ($j3,$j2,$j1,$j0) = (2*$j3 - $j2 + 2*$j1 - 2*$j0,  $j3, $j2, $j1);
    }
    return $j3;
  }
}

#------------------------------------------------------------------------------
# points visited

{
  my @_UNDOCUMENTED_level_to_visited = (2, 3, 5, 9, 16);
  sub _UNDOCUMENTED_level_to_visited {
    my ($self, $level) = @_;

    if ($level < 0) { return undef; }
    if ($level <= $#_UNDOCUMENTED_level_to_visited) { return $_UNDOCUMENTED_level_to_visited[$level]; }
    if (is_infinite($level)) { return $level; }

    my ($p0,$p1,$p2,$p3,$p4) = @_UNDOCUMENTED_level_to_visited;
    foreach (5 .. $level) {
      ($p4,$p3,$p2,$p1,$p0) = (4*$p4 - 5*$p3 + 4*$p2 - 6*$p1 + 4*$p0,  $p4, $p3, $p2, $p1);
    }
    return $p4;
  }
}

#------------------------------------------------------------------------------
{
  my @_UNDOCUMENTED__n_segment_is_right_boundary
    #         R M A B C D F G H
    #         1 2 3 4 5 6 7 8 9
    = ([undef,1,3,1,6,7,9,3     ],
       [undef,2,4,5,4,8,5,0,0,4 ]);

  sub _UNDOCUMENTED__n_segment_is_right_boundary {
    my ($self, $n) = @_;
    if (is_infinite($n)) { return 0; }
    unless ($n >= 0) { return 0; }
    $n = int($n);

    my $state = 1;
    foreach my $bit (reverse bit_split_lowtohigh($n)) { # high to low
      $state = $_UNDOCUMENTED__n_segment_is_right_boundary[$bit][$state]
        || return 0;
    }
    return 1;
  }
}

1;
__END__


#------------------------------------------------------------------------------

# n_to_xy() old code based on i+1 multiply up.
#
# my @dir4_to_dx = (1,0,-1,0);
# my @dir4_to_dy = (0,1,0,-1);
#
# sub n_to_xy {
#   my ($self, $n) = @_;
#   ### DragonCurve n_to_xy(): $n
#
#   if ($n < 0) { return; }
#   if (is_infinite($n)) { return ($n, $n); }
#
#   my $int = int($n);   # integer part
#   $n -= $int;          # fraction part
#   my $zero = ($int * 0);  # inherit bignum 0
#
#   # arm as initial rotation
#   my $rot = _divrem_mutate ($int, $self->{'arms'});
#
#   my @digits = bit_split_lowtohigh($int);
#   ### @digits
#
#   my @sx;
#   my @sy;
#   {
#     my $sy = $zero;     # inherit BigInt 0
#     my $sx = $zero + 1; # inherit BigInt 1
#     ### $sx
#     ### $sy
#
#     foreach (@digits) {
#       push @sx, $sx;
#       push @sy, $sy;
#       # (sx,sy) + rot+90(sx,sy), is multiply (i+1)
#       ($sx,$sy) = ($sx - $sy,
#                    $sy + $sx);
#     }
#   }
#
#   my $rev = 0;
#   my $x = $zero;
#   my $y = $zero;
#   while (defined (my $digit = pop @digits)) {  # high to low
#     my $sx = pop @sx;
#     my $sy = pop @sy;
#     ### at: "$x,$y  $digit   side $sx,$sy"
#     ### $rot
#
#     if ($rot & 2) {
#       ($sx,$sy) = (-$sx,-$sy);
#     }
#     if ($rot & 1) {
#       ($sx,$sy) = (-$sy,$sx);
#     }
#
#     if ($rev) {
#       if ($digit) {
#         $x -= $sy;
#         $y += $sx;
#         ### rev add to: "$x,$y next is still rev"
#       } else {
#         $rot ++;
#         $rev = 0;
#       }
#     } else {
#       if ($digit) {
#         $rot ++;
#         $x += $sx;
#         $y += $sy;
#         $rev = 1;
#         ### add to: "$x,$y next is rev"
#       }
#     }
#   }
#
#   $rot &= 3;
#   $x = $n * $dir4_to_dx[$rot] + $x;
#   $y = $n * $dir4_to_dy[$rot] + $y;
#
#   ### final: "$x,$y"
#   return ($x,$y);
# }

# n_to_dxdy() by separate direction and frac next turn.
#
# my @dir4_to_dx = (1,0,-1,0);
# my @dir4_to_dy = (0,1,0,-1);
#
# sub n_to_dxdy {
#   my ($self, $n) = @_;
#   ### n_to_dxdy(): $n
#
#   my $int = int($n);
#   $n -= $int;  # $n fraction part
#   ### $int
#   ### $n
#
#   my $dir = _divrem_mutate ($int, $self->{'arms'});
#   ### arm as initial dir: $dir
#
#   my @digits = bit_split_lowtohigh($int);
#   ### @digits
#
#   my $prev = 0;
#   foreach my $digit (reverse @digits) {
#     $dir += ($digit != $prev);
#     $prev = $digit;
#   }
#   $dir &= 3;
#   my $dx = $dir4_to_dx[$dir];
#   my $dy = $dir4_to_dy[$dir];
#   ### $dx
#   ### $dy
#
#   if ($n) {
#     ### apply fraction part: $n
#
#     # maybe:
#     # +/- $n as dx or dy
#     # +/- (1-$n) as other dy or dx
#
#     # strip any low 1-bits, and the 0-bit above them
#     while (shift @digits) { }
#
#     $dir += ($digits[0] ? -1 : 1); # bit above lowest 0-bit, 1=right,0=left
#     $dir &= 3;
#     $dx += $n*($dir4_to_dx[$dir] - $dx);
#     $dy += $n*($dir4_to_dy[$dir] - $dy);
#
#     # my $sign = ($digits[0] ? 1 : -1); # bit above lowest 0-bit
#     # ($dx,$dy) = ($dx - $n*($dx - $sign*$dy),
#     #              $dy - $n*($dy + $sign*$dx));
#
#     # my ($next_dx, $next_dy);
#     # if ($digits[0]) {   # bit above lowest 0-bit
#     #   # right
#     #   $next_dx = $dy;
#     #   $next_dy = -$dx;
#     # } else {
#     #   # left
#     #   $next_dx = -$dy;
#     #   $next_dy = $dx;
#     # }
#     # ### $next_dx
#     # ### $next_dy
#     #
#     # $dx += $n*($next_dx - $dx);
#     # $dy += $n*($next_dy - $dy);
#   }
#
#   ### result: "$dx, $dy"
#   return ($dx,$dy);
# }

#------------------------------------------------------------------------------

=for stopwords eg Ryde Dragon Math-PlanePath Heighway Harter et al vertices doublings OEIS Online Jorg Arndt fxtbook versa Nlevel Nlevel-1 Xlevel,Ylevel lengthways Lmax Lmin Wmin Wmax Ns Shallit Kmosek Seminumerical dX,dY bitwise lookup dx dy ie Xmid,Ymid Xlevel Xmid

=head1 NAME

Math::PlanePath::DragonCurve -- dragon curve

=head1 SYNOPSIS

 use Math::PlanePath::DragonCurve;
 my $path = Math::PlanePath::DragonCurve->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is the dragon or paper folding curve by Heighway, Harter, et al.

=cut

# math-image --path=DragonCurve --all --output=numbers_dash --size=70x30

=pod

                 9----8    5---4               2
                 |    |    |   |
                10--11,7---6   3---2           1
                      |            |
      17---16   13---12        0---1       <- Y=0
       |    |    |
      18-19,15-14,22-23                       -1
            |    |    |
           20--21,25-24                       -2
                 |
                26---27                       -3
                      |
         --32   29---28                       -4
            |    |
           31---30                            -5

       ^    ^    ^    ^    ^   ^   ^
      -5   -4   -3   -2   -1  X=0  1 ...

The curve visits "inside" X,Y points twice.  The first of these is X=-2,Y=1
which is N=7 and also N=11.  The segments N=6,7,8 and N=10,11,12 have
touched, but the path doesn't cross itself.  The doubled vertices are all
like this, touching but not crossing and no edges repeating.

=head2 Arms

The curve fills a quarter of the plane and four copies mesh together
perfectly when rotated by 90, 180 and 270 degrees.  The C<arms> parameter
can choose 1 to 4 curve arms successively advancing.

For example arms=4 begins as follows, with N=0,4,8,12,etc being the first
arm, N=1,5,9,13 the second, N=2,6,10,14 the third and N=3,7,11,15 the
fourth.

    arms => 4

            20 ------ 16
                       |
             9 ------5/12 -----  8       23
             |         |         |        |
    17 --- 13/6 --- 0/1/2/3 --- 4/15 --- 19
     |       |         |         |
    21      10 ----- 14/7 ----- 11
                       |
                      18 ------ 22

With four arms every X,Y point is visited twice (except the origin 0,0 where
all four begin) and every edge between the points is traversed once.

=head2 Level Angle

The first step N=1 is to the right along the X axis and the path then slowly
spirals anti-clockwise and progressively fatter.  The end of each
replication is N=2^level which is at level*45 degrees around,

    N       X,Y     angle   radial dist
   ----    -----    -----   -----------
     1      1,0        0         1
     2      1,1       45       sqrt(2)
     4      0,2       90       sqrt(4)=2
     8     -2,2      135       sqrt(8)
    16     -4,0      180       sqrt(16)=4
    32     -4,-4     225       sqrt(32)
   ...

Here's points N=0 to N=2^9=512.  "0" is the origin and "+" is N=512.  Notice
it's spiralled around full-circle to angle 45 degrees up again, like the
initial N=2.

                                    * *     * *
                                  * * *   * * *
                                  * * * * * * * * *
                                  * * * * * * * * *
                            * *   * * * *       * *
                          * * *   * * * *     + * *
                          * * * * * *         * *
                          * * * * * * *
                          * * * * * * * *
                              * * * * * *
                              * * * *
                                  * * * * * * *
                            * *   * * * * * * * *
                          * * *   * * * * * * * *
                          * * * * * * * * * *
                          * * * * * * * * * * * * * * *
                          * * * * * * * * * * * * * * * *
                              * * * * * * * * * * * * * *
                              * * * * * * * * * * * *
        * * * *                   * * * * * * * * * * *
        * * * * *           * *   * * * *       * * * * *
    * * * *   0 *         * * *   * * * *   * * * * * * *
    * * * *               * * * * * *       * * * * *
      * * *               * * * * * * *       * * * *
        * * * *     * *   * * * * * * * *
    * * * * * *   * * *   * * * * * * * *
    * * * * * * * * * * * * * * * * *
      * * * * * * * * * * * * * * * * *
                * * * * *       * * * * *
            * * * * * * *   * * * * * * *
            * * * * *       * * * * *
              * * * *         * * * *

At a power of two Nlevel=2^level for N=2 or higher, the curve always goes
upward from Nlevel-1 to Nlevel, and then goes to the left for Nlevel+1.  For
example at N=16 the curve goes up N=15 to N=16, then left for N=16 to N=17.
Likewise at N=32, etc.  The spiral curls around ever further but the
self-similar twist back means the Nlevel endpoint is always at this same
up/left orientation.  See L</Total Turn> below for the net direction in
general.

=head2 Level Ranges

The X,Y extents of the path through to Nlevel=2^level can be expressed as a
"length" in the direction of the Xlevel,Ylevel endpoint and a "width"
across.

    level even, so endpoint is a straight line
    k = level/2

       +--+      <- Lmax
       |  |
       |  E      <- Lend = 2^k at Nlevel=2^level
       |
       +-----+
             |
          O  |   <- Lstart=0
          |  |
          +--+   <- Lmin

       ^     ^
    Wmin     Wmax

    Lmax = (7*2^k - 4)/6 if k even
           (7*2^k - 2)/6 if k odd

    Lmin = - (2^k - 1)/3 if k even
           - (2^k - 2)/3 if k odd

    Wmax = (2*2^k - 2) / 3 if k even
           (2*2^k - 1) / 3 if k odd

    Wmin = Lmin

For example level=2 is to Nlevel=2^2=4 and k=level/2=1 is odd so it measures
as follows,

    4      <- Lmax = (7*2^1 - 2)/6 = 2
    |
    3--2
       |
    0--1   <- Lmin = -(2^1 - 2)/3 = 0

    ^  ^Wmax = (2*2^1 - 1)/3 = 1
    |
    Wmin = Lmin = 0

Or level=4 is to Nlevel=2^4=16 and k=4/2=2 is even.  It measures as follows.
The lengthways "L" measures are in the direction of the N=16 endpoint and
the "W" measures are across.

          9----8    5---4        <- Wmax = (2*2^2 - 2)/3 = 2
          |    |    |   |
         10--11,7---6   3---2
               |            |
    16   13---12        0---1
     |    |
    15---14                      <- Wmin = -(2^2 - 1)/3 = -1

     ^                      ^Lmin = Wmin = -1
     |
     Lmax = (7*2^2 - 4)/6 = 4

The formulas are all integer values, but the fractions 7/6, 1/3 and 2/3 show
the limits as the level increases.  If scaled so that length Lend=2^k is
reckoned as 1 unit then Lmax extends 1/6 past the end, Lmin and Wmin extend
1/3, and Wmax extends across 2/3.

    +--------+ --
    | -      | 1/6   total length
    || |     |          = 1/6+1+1/3 = 3/2
    || E     | --
    ||       |
    ||       |
    | \      |  1
    |  \     |
    |   --\  |
    |      \ |
    |       ||
    |  O    || --
    |  |    ||
    |  |    || 1/3
    |   ---- |
    +--------+ --
    1/3|  2/3

    total width = 1/3+2/3 = 1

=head2 Paper Folding

The path is called a paper folding curve because it can be generated by
thinking of a long strip of paper folded in half repeatedly and then
unfolded so each crease is a 90 degree angle.  The effect is that the curve
repeats in successive doublings turned by 90 degrees and reversed.

The first segment unfolds, pivoting at the "1",

                                          2
                                     ->   |
                     unfold         /     |
                      ===>         |      |
                                          |
    0-------1                     0-------1

Then the same again with that L shape, pivoting at the "2", then after that
pivoting at the "4", and so on.

                                 4
                                 |
                                 |
                                 |
                                 3--------2
           2                              |
           |        unfold          ^     |
           |         ===>            \_   |
           |                              |
    0------1                     0--------1

It can be shown that this unfolding doesn't overlap itself but the corners
may touch, such as at the X=-2,Y=1 etc noted above.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::DragonCurve-E<gt>new ()>

=item C<$path = Math::PlanePath::DragonCurve-E<gt>new (arms =E<gt> $int)>

Create and return a new path object.

The optional C<arms> parameter can make 1 to 4 copies of the curve, each arm
successively advancing.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

The curve visits an C<$x,$y> twice for various points (all the "inside"
points).  The smaller of the two N values is returned.

=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>

Return a list of N point numbers for coordinates C<$x,$y>.

The origin 0,0 has C<arms_count()> many N since it's the starting point for
each arm.  Other points have up to two Ns for a given C<$x,$y>.  If arms=4
then every C<$x,$y> except the origin has exactly two Ns.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 2**$level)>, or for multiple arms return C<(0, $arms *
2**$level + ($arms-1))>.

There are 2^level segments in a curve level, so 2^level+1 points numbered
from 0.  For multiple arms there are arms*(2^level+1) points, numbered from
0 so n_hi = arms*(2^level+1)-1.

=back

=head1 FORMULAS

Various formulas for coordinates, lengths and area can be found in the
author's long mathematical write-up

=over

L<http://user42.tuxfamily.org/dragon/index.html>

=back

=cut

# =head2 N to X,Y
# 
# The location of a given N is found from the bits of N taken high to low
# 
#     s = 1,  X,Y=0,0
#     for bits of N high to low
#        (X,Y) = (X+Y+s*bit, X-Y)         multiply b=1+i, add s if bit==1
#        if bit above and this bit == 01 then s = -s
# 
# At the high bit of N the bit above is 0, so there is a sign change s=-s at
# the highest 1 in N.  The effect is a change of base from binary to base b,
# but with a sign change below each 01 bit pair.  This works by considering
# the second half as a rotated reversed curve, or alternatively by maintaining
# and following a direction s.

=pod

=head2 X,Y to N

The current code uses the C<DragonMidpoint> C<xy_to_n()> by rotating -45
degrees and offsetting to the midpoints of the four edges around the target
X,Y.  The C<DragonMidpoint> algorithm then gives four candidate N values and
those which convert back to the desired X,Y in the C<DragonCurve>
C<n_to_xy()> are the results for C<xy_to_n_list()>.

    Xmid,Ymid = X+Y, Y-X    # rotate -45 degrees
    for dx = 0 or -1
      for dy = 0 or 1
        N candidate = DragonMidpoint xy_to_n(Xmid+dx,Ymid+dy)

Since there's at most two C<DragonCurve> Ns at a given X,Y the loop can stop
when two Ns are found.

Only the "leaving" edges will convert back to the target N, so only two of
the four edges actually need to be considered.  Is there a way to identify
them?  For arm 1 and 3 the leaving edges are up,down on odd points (meaning
sum X+Y odd) and right,left for even points (meaning sum X+Y even).  But for
arm 2 and 4 it's the other way around.  Without an easy way to determine the
arm this doesn't seem to help.

=head2 X,Y is Visited

Whether a given X,Y is visited by the curve can be determined from one or
two segments (rather then up to four for X,Y to N).

            |             S midpoint Xmid = X+Y
            |                        Ymid = Y-X
    *---T--X,Y--S---*
            |             T midpoint Xmid-1
            |                        Ymid+1

Segment S is to the East of X,Y.  The arm it falls on can be determined as
per L<Math::PlanePath::DragonMidpoint/X,Y to N>.  Numbering arm(S) = 0,1,2,3
then

                                     X,Y Visited
                                     -----------
    if arms_count()==4                  yes     # whole plane
    if arm(S) < arms_count()            yes
    if arm(S)==2 and arms_count()==1    no
    if arm(T) < arms_count()            yes

This works because when two arms touch they approach and leave by a right
angle, without crossing.  So two opposite segments S and T identify the two
possible arms coming to the X,Y point.

           |
           |
            \
      ----   ----
          \
           |
           |

An arm only touches its immediate neighbour, ie. arm-1 or arm+1 mod 4.  This
means if arm(S)==2 then arm(T) can only be 1,2,3, not 0.  So if
C<arms_count()> is 1 then arm(T) cannot be on the curve and no need to run
its segment check.

The only exception to the right-angle touching rule is at the origin X,Y =
0,0.  In that case Xmid,Ymid = 0,0 is on the first arm and X,Y is correctly
determined to be on the curve.  If S was not to the East but some other
direction away from X,Y then this wouldn't be so.

=head2 Turn

At each point the curve always turns either left or right, it never goes
straight ahead.  The bit above the lowest 1-bit in N gives the turn
direction.

    N = 0b...z10000   (possibly no trailing 0s)

    z bit    Turn
    -----    ----
      0      left
      1      right

For example N=12 is binary 0b1100, the lowest 1 bit is 0b_1__ and the bit
above that is a 1, which means turn to the right.  Or N=18 is binary
0b10010, the lowest 1 is 0b___1_ and the bit above that is 0, so turn left
there.

This z bit can be picked out with some bit twiddling

    $mask = $n & -$n;          # lowest 1 bit, 000100..00
    $z = $n & ($mask << 1);    # the bit above it
    $turn = ($z == 0 ? 'left' : 'right');

This sequence is in Knuth volume 2 "Seminumerical Algorithms" answer to
section 4.5.3 question 41 and is called the "dragon sequence".  It's
expressed there recursively as

    d(0) = 1       # unused, since first turn at N=1
    d(2N) = d(N)   # shift down looking for low 1-bit
    d(4N+1) = 0    # bit above lowest 1-bit is 0
    d(4N+3) = 1    # bit above lowest 1-bit is 1

=head2 Next Turn

The bits also give the turn after next by looking at the bit above the
lowest 0-bit.  This works because 011..11 + 1 = 100..00 so the bit above the
lowest 0 becomes the bit above the lowest 1.

    N = 0b...w01111    (possibly no trailing 1s)

    w bit    Next Turn
    ----     ---------
      0       left
      1       right

For example at N=12=0b1100 the lowest 0 is the least significant bit 0b___0,
and above that is a 0 too, so at N=13 the turn is to the left.  Or for
N=18=0b10010 the lowest 0 is again the least significant bit, but above it
is a 1, so at N=19 the turn is to the right.

This too can be found with some bit twiddling, as for example

    $mask = $n ^ ($n+1);      # low one and below 000111..11
    $w = $n & ($mask + 1);    # the bit above there
    $turn = ($w == 0 ? 'left' : 'right');

=head2 Total Turn

The total turn is the count of 0E<lt>-E<gt>1 transitions in the runs of bits
of N, which is the same as how many bit pairs of N (including overlaps) are
different so "01" or "10".

This can be seen from the segment replacements resulting from bits of N,

    N bits from high to low, start in "plain" state

    plain state
     0 bit -> no change
     1 bit -> count left, and go to reversed state

    reversed state
     0 bit -> count left, and go to plain state
     1 bit -> no change

The 0 or 1 counts are from the different side a segment expands on in plain
or reversed state.  Segment A to B expands to an "L" shape bend which is on
the right in plain state, but on the left in reversed state.

      plain state             reverse state

      A = = = = B                    +
       \       ^              0bit  / \
        \     /               turn /   \ 1bit
    0bit \   / 1bit           left/     \
          \ /  turn              /       v
           +   left             A = = = = B

In both cases a rotate of +45 degrees keeps the very first segment of the
whole curve in a fixed direction (along the X axis), which means the
south-east slope shown is no-change.  This is the 0 of plain or the 1 of
reversed.  And the north-east slope which is the other new edge is a turn
towards the left.

It can be seen the "state" above is simply the previous bit, so the effect
for the bits of N is to count a left turn at each transition from 0-E<gt>1
or 1-E<gt>0.  Initial "plain" state means the infinite zero bits at the high
end of N are included.  For example N=9 is 0b1001 so three left turns for
curve direction south to N=10 (as can be seen in the diagram above).

     1 00 1   N=9
    ^ ^  ^
    +-+--+---three transitions,
             so three left turns for direction south

The transitions can also be viewed as a count of how many runs of contiguous
0s or 1s, up to the highest 1-bit.

    1 00 1   three blocks of 0s and 1s

X<Arndt, Jorg>X<fxtbook>This can be calculated by some bit twiddling with a
shift and xor to turn transitions into 1-bits which can then be counted, as
per Jorg Arndt (fxtbook section 1.31.3.1 "The Dragon Curve").

    total turn = count_1_bits ($n ^ ($n >> 1))

The reversing structure of the curve shows up in the total turn at each
point.  The total turns for a block of 2^N is followed by its own reversal
plus 1.  For example,

                    ------->
    N=0 to N=7    0, 1, 2, 1, 2, 3, 2, 1

    N=15 to N=8   1, 2, 3, 2, 3, 4, 3, 2    each is +1
                               <-------

=head2 N to dX,dY

C<n_to_dxdy()> is the "total turn" per above, or for fractional N then an
offset according to the "next turn" above.  If using the bit twiddling
operators described then the two can be calculated separately.

The current C<n_to_dxdy()> code tries to support floating point or other
number types without bitwise XOR etc by processing bits high to low with a
state table which combines the calculations for total turn and next turn.
The state encodes

    total turn       0 to 3
    next turn        0 or 1
    previous bit     0 or 1  (the bit above the current bit)

The "next turn" remembers the bit above lowest 0 seen so far (or 0
initially).  The "total turn" counts 0-E<gt>1 or 1-E<gt>0 transitions.  The
"previous bit" shows when there's a transition, or what bit is above when a
0 is seen.  It also works not to have this previous bit in the state but
instead pick out two bits each time.

At the end of bit processing any "previous bit" in state is no longer needed
and can be masked out to lookup the final four dx, dy, next dx, next dy.

=head1 OEIS

The Dragon curve is in Sloane's Online Encyclopedia of Integer Sequences in
many forms (and see C<DragonMidpoint> for its forms too),

=over

L<http://oeis.org/A014577> (etc)

=back

    A038189   turn, 0=left,1=right, bit above lowest 1, extra 0
    A089013     same, but initial extra 1
    A082410   turn, 1=left,0=right, reversing complement, extra 0
    A099545   turn, 1=left,3=right, as [odd part n] mod 4
                so turn by 90 degrees * 1 or 3
    A034947   turn, 1=left,-1=right, Jacobi (-1/n)
    A112347   turn, 1=left,-1=right, Kronecker (-1/n), extra 0
    A121238   turn, 1=left,-1=right, -1^(n + some partitions) extra 1
    A014577   next turn, 1=left,0=right
    A014707   next turn, 0=left,1=right
    A014709   next turn, 1=left,2=right
    A014710   next turn, 2=left,1=right
    A143347   paperfolding constant, 0=left,1=right in binary
    A090678   1=same turn as previous, 0=different

These numerous turn sequences differ only in having left or right
represented as 0, 1, -1, etc, and possibly "extra" initial 0 or 1 at n=0
arising from the definitions and the first turn being at n=N=1.  The "next
turn" forms begin at n=0 for turn at N=1 and so are the turn at N=n+1.

    A005811   direction total turn
    A088748   direction total turn + 1
    A037834   direction total turn - 1
    A136004   direction total turn + 4
    A246960   direction 0,1,2,3 = total turn mod 4
    A173318   cumulative(total turn)
    A164910   cumulative(total turn + 1)
    A166242   2^(total turn), by double/halving
    A000975   N of new maximum total turn, binary 10101...
    A268411   direction of horizontals, 0=East, 1=West
    A043724   N of East
    A043725   N of North
    A043726   N of West
    A043727   N of South

    A088431   turn sequence run lengths
    A007400     2*runlength

    A091072   N positions of the left turns, being odd part form 4K+1
    A091067   N positions of the right turns, being odd part form 4K+3
    A255068   N positions where next turn right
    A060833   N positions where previous turn right
    A106836   N steps between right turns
    A088742   N steps between left turns
    A255070   num right turns 1 to N
    A236840   2* num right turns 1 to N
    A003460   turns N=1 to N=2^n-1 packed as bits 1=left,0=right
                low to high, then written in octal
    A126937   points numbered like SquareSpiral (start N=0 and flip Y)

    A038503   num segments East  in level k
    A038504   num segments North in level k
    A038505   num segments West  in level k
    A000749   num segments South in level k

    A146559   X at N=2^k, for k>=1, being Re((i+1)^k)
    A009545   Y at N=2^k, for k>=1, being Im((i+1)^k)

    A227036   boundary length N=0 to N=2^k
                also right boundary length to N=2^(k+1)
    A203175   left boundary length N=0 to N=2^k
                = differences of total boundary
                = squares on left boundary

    A003476   squares on right boundary
                = single points N=0 to N=2^(k-1) inclusive
    A164395   single points N=0 to N=2^k-1 inclusive, for k=4 up

    A003230   area enclosed N=0 to N=2^k, for k=4 up
               same as double points
    A003478   area enclosed by left side,
               also area increment
    A003477   area of each blob (touching enclosed unit squares)

    A003479   join area between N=2^k replications
    A003229   join area increment,
               also area left side extra over doubling
    A077949    same

    A289265   growth rate r = 1.695 of boundaries etc
    A272031   fractal dimension log(r)/log(sqrt(2))

For reference, "dragon-like" A059125 is similar to the turn sequence
A014707, but differs in having the "middle" values for each replication come
from successive values of the sequence itself, or some such.

=head2 A088431 and A007400

The run lengths A088431 and A007400 are from a continued fraction expansion
of an infinite sum

        1   1   1     1      1              1
    1 + - + - + -- + --- + ----- + ... + ------- + ...
        2   4   16   256   65536         2^(2^k)

X<Shallit, Jeffrey>X<Kmosek>Jeffrey Shallit and independently M. Kmosek show
how continued fraction terms repeated in reverse give rise to this sort of
power sum,

=over

Jeffrey Shallit, "Simple Continued Fractions for Some Irrational Numbers",
Journal of Number Theory, volume 11, 1979, pages 209-217.
L<http://www.cs.uwaterloo.ca/~shallit/papers.html>
L<http://www.cs.uwaterloo.ca/~shallit/Papers/scf.ps>

(And which appears in Knuth "Art of Computer Programming", volume 2, section
4.5.3 exercise 41.)

=cut

# M. Kmosek, "Rozwiniecie niektorych liczb niewymiernych na ulamki lancuchowe", Master's
# thesis, Uniwersytet Warszawski, 1979.  -- is that right?

=pod

=back

=head2 A126937

The A126937 C<SquareSpiral> numbering has the dragon curve and square
spiralling with their Y axes in opposite directions, as shown in its
F<a126937.pdf>.  So the dragon curve turns up towards positive Y but the
square spiral is numbered down towards negative Y (or vice versa).
C<PlanePath> code for this starting at C<$i=0> would be

      my $dragon = Math::PlanePath::DragonCurve->new;
      my $square = Math::PlanePath::SquareSpiral->new (n_start => 0);
      my ($x, $y) = $dragon->n_to_xy ($i);
      my $A126937_of_i = $square->xy_to_n ($x, -$y);

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DragonRounded>,
L<Math::PlanePath::DragonMidpoint>,
L<Math::PlanePath::R5DragonCurve>,
L<Math::PlanePath::TerdragonCurve>

L<Math::PlanePath::ComplexMinus>,
L<Math::PlanePath::ComplexPlus>,
L<Math::PlanePath::CCurve>,
L<Math::PlanePath::AlternatePaper>

L<Graph::Maker::TwindragonAreaTree>

L<http://rosettacode.org/wiki/Dragon_curve>

=for comment http://wiki.tcl.tk/10745 recursive curves

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut