The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.
/*
** This file is in the public domain, so clarified as of
** 1996-06-05 by Arthur David Olson.
*/

/*
** Leap second handling from Bradley White.
** POSIX-style TZ environment variable handling from Guy Harris.
*/

#include "bson-compat.h"
#include "bson-macros.h"
#include "bson-timegm-private.h"

#ifndef BSON_OS_WIN32

#include "errno.h"
#include "string.h"
#include "limits.h"	/* for CHAR_BIT et al. */
#include "time.h"

/* Unlike <ctype.h>'s isdigit, this also works if c < 0 | c > UCHAR_MAX. */
#define is_digit(c) ((unsigned)(c) - '0' <= 9)

#ifndef CHAR_BIT
#define CHAR_BIT 8
#endif

#if 2 < __GNUC__ + (96 <= __GNUC_MINOR__)
# define ATTRIBUTE_CONST __attribute__ ((const))
# define ATTRIBUTE_PURE __attribute__ ((__pure__))
# define ATTRIBUTE_FORMAT(spec) __attribute__ ((__format__ spec))
#else
# define ATTRIBUTE_CONST /* empty */
# define ATTRIBUTE_PURE /* empty */
# define ATTRIBUTE_FORMAT(spec) /* empty */
#endif

#if !defined _Noreturn && (!defined(__STDC_VERSION__) || __STDC_VERSION__ < 201112)
# if 2 < __GNUC__ + (8 <= __GNUC_MINOR__)
#  define _Noreturn __attribute__ ((__noreturn__))
# else
#  define _Noreturn
# endif
#endif

#if (!defined(__STDC_VERSION__) || __STDC_VERSION__ < 199901) && !defined restrict
# define restrict /* empty */
#endif

#ifndef TYPE_BIT
#define TYPE_BIT(type)	(sizeof (type) * CHAR_BIT)
#endif /* !defined TYPE_BIT */

#ifndef TYPE_SIGNED
#define TYPE_SIGNED(type) (((type) -1) < 0)
#endif /* !defined TYPE_SIGNED */

/* The minimum and maximum finite time values.  */
static time_t const time_t_min =
    (TYPE_SIGNED(time_t)
        ? (time_t) -1 << (CHAR_BIT * sizeof (time_t) - 1)
        : 0);
static time_t const time_t_max =
    (TYPE_SIGNED(time_t)
        ? - (~ 0 < 0) - ((time_t) -1 << (CHAR_BIT * sizeof (time_t) - 1))
        : -1);


#ifndef TZ_MAX_TIMES
#define TZ_MAX_TIMES	2000
#endif /* !defined TZ_MAX_TIMES */

#ifndef TZ_MAX_TYPES
/* This must be at least 17 for Europe/Samara and Europe/Vilnius.  */
#define TZ_MAX_TYPES	256 /* Limited by what (unsigned char)'s can hold */
#endif /* !defined TZ_MAX_TYPES */

#ifndef TZ_MAX_CHARS
#define TZ_MAX_CHARS	50	/* Maximum number of abbreviation characters */
				/* (limited by what unsigned chars can hold) */
#endif /* !defined TZ_MAX_CHARS */

#ifndef TZ_MAX_LEAPS
#define TZ_MAX_LEAPS	50	/* Maximum number of leap second corrections */
#endif /* !defined TZ_MAX_LEAPS */

#define SECSPERMIN	60
#define MINSPERHOUR	60
#define HOURSPERDAY	24
#define DAYSPERWEEK	7
#define DAYSPERNYEAR	365
#define DAYSPERLYEAR	366
#define SECSPERHOUR	(SECSPERMIN * MINSPERHOUR)
#define SECSPERDAY	((int_fast32_t) SECSPERHOUR * HOURSPERDAY)
#define MONSPERYEAR	12

#define TM_SUNDAY	0
#define TM_MONDAY	1
#define TM_TUESDAY	2
#define TM_WEDNESDAY	3
#define TM_THURSDAY	4
#define TM_FRIDAY	5
#define TM_SATURDAY	6

#define TM_JANUARY	0
#define TM_FEBRUARY	1
#define TM_MARCH	2
#define TM_APRIL	3
#define TM_MAY		4
#define TM_JUNE		5
#define TM_JULY		6
#define TM_AUGUST	7
#define TM_SEPTEMBER	8
#define TM_OCTOBER	9
#define TM_NOVEMBER	10
#define TM_DECEMBER	11

#define TM_YEAR_BASE	1900

#define EPOCH_YEAR	1970
#define EPOCH_WDAY	TM_THURSDAY

#define isleap(y) (((y) % 4) == 0 && (((y) % 100) != 0 || ((y) % 400) == 0))

/*
** Since everything in isleap is modulo 400 (or a factor of 400), we know that
**	isleap(y) == isleap(y % 400)
** and so
**	isleap(a + b) == isleap((a + b) % 400)
** or
**	isleap(a + b) == isleap(a % 400 + b % 400)
** This is true even if % means modulo rather than Fortran remainder
** (which is allowed by C89 but not C99).
** We use this to avoid addition overflow problems.
*/

#define isleap_sum(a, b)	isleap((a) % 400 + (b) % 400)

#ifndef TZ_ABBR_MAX_LEN
#define TZ_ABBR_MAX_LEN	16
#endif /* !defined TZ_ABBR_MAX_LEN */

#ifndef TZ_ABBR_CHAR_SET
#define TZ_ABBR_CHAR_SET \
	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
#endif /* !defined TZ_ABBR_CHAR_SET */

#ifndef TZ_ABBR_ERR_CHAR
#define TZ_ABBR_ERR_CHAR	'_'
#endif /* !defined TZ_ABBR_ERR_CHAR */

#ifndef WILDABBR
/*
** Someone might make incorrect use of a time zone abbreviation:
**	1.	They might reference tzname[0] before calling tzset (explicitly
**		or implicitly).
**	2.	They might reference tzname[1] before calling tzset (explicitly
**		or implicitly).
**	3.	They might reference tzname[1] after setting to a time zone
**		in which Daylight Saving Time is never observed.
**	4.	They might reference tzname[0] after setting to a time zone
**		in which Standard Time is never observed.
**	5.	They might reference tm.TM_ZONE after calling offtime.
** What's best to do in the above cases is open to debate;
** for now, we just set things up so that in any of the five cases
** WILDABBR is used. Another possibility: initialize tzname[0] to the
** string "tzname[0] used before set", and similarly for the other cases.
** And another: initialize tzname[0] to "ERA", with an explanation in the
** manual page of what this "time zone abbreviation" means (doing this so
** that tzname[0] has the "normal" length of three characters).
*/
#define WILDABBR	"   "
#endif /* !defined WILDABBR */

#ifdef TM_ZONE
static const char	wildabbr[] = WILDABBR;
#endif

static const char	gmt[] = "GMT";

struct ttinfo {				/* time type information */
	int_fast32_t	tt_gmtoff;	/* UT offset in seconds */
	int		tt_isdst;	/* used to set tm_isdst */
	int		tt_abbrind;	/* abbreviation list index */
	int		tt_ttisstd;	/* true if transition is std time */
	int		tt_ttisgmt;	/* true if transition is UT */
};

struct lsinfo {				/* leap second information */
	time_t		ls_trans;	/* transition time */
	int_fast64_t	ls_corr;	/* correction to apply */
};

#define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))

#ifdef TZNAME_MAX
#define MY_TZNAME_MAX	TZNAME_MAX
#endif /* defined TZNAME_MAX */
#ifndef TZNAME_MAX
#define MY_TZNAME_MAX	255
#endif /* !defined TZNAME_MAX */

struct state {
	int		leapcnt;
	int		timecnt;
	int		typecnt;
	int		charcnt;
	int		goback;
	int		goahead;
	time_t		ats[TZ_MAX_TIMES];
	unsigned char	types[TZ_MAX_TIMES];
	struct ttinfo	ttis[TZ_MAX_TYPES];
	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
				(2 * (MY_TZNAME_MAX + 1)))];
	struct lsinfo	lsis[TZ_MAX_LEAPS];
	int		defaulttype; /* for early times or if no transitions */
};

struct rule {
	int		r_type;		/* type of rule--see below */
	int		r_day;		/* day number of rule */
	int		r_week;		/* week number of rule */
	int		r_mon;		/* month number of rule */
	int_fast32_t	r_time;		/* transition time of rule */
};

#define JULIAN_DAY		0	/* Jn - Julian day */
#define DAY_OF_YEAR		1	/* n - day of year */
#define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */

/*
** Prototypes for static functions.
*/

static void		gmtload(struct state * sp);
static struct tm *	gmtsub(const time_t * timep, int_fast32_t offset,
				struct tm * tmp);
static int		increment_overflow(int * number, int delta);
static int		leaps_thru_end_of(int y) ATTRIBUTE_PURE;
static int		increment_overflow32(int_fast32_t * number, int delta);
static int		normalize_overflow32(int_fast32_t * tensptr,
				int * unitsptr, int base);
static int		normalize_overflow(int * tensptr, int * unitsptr,
				int base);
static time_t		time1(struct tm * tmp,
				struct tm * (*funcp)(const time_t *,
				int_fast32_t, struct tm *),
				int_fast32_t offset);
static time_t		time2(struct tm *tmp,
				struct tm * (*funcp)(const time_t *,
				int_fast32_t, struct tm*),
				int_fast32_t offset, int * okayp);
static time_t		time2sub(struct tm *tmp,
				struct tm * (*funcp)(const time_t *,
				int_fast32_t, struct tm*),
				int_fast32_t offset, int * okayp, int do_norm_secs);
static struct tm *	timesub(const time_t * timep, int_fast32_t offset,
				const struct state * sp, struct tm * tmp);
static int		tmcomp(const struct tm * atmp,
				const struct tm * btmp);

static struct state	gmtmem;
#define gmtptr		(&gmtmem)

static int		gmt_is_set;

static const int	mon_lengths[2][MONSPERYEAR] = {
	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};

static const int	year_lengths[2] = {
	DAYSPERNYEAR, DAYSPERLYEAR
};

static void
gmtload(struct state *const sp)
{
    memset(sp, 0, sizeof(struct state));
    sp->typecnt = 1;
    sp->charcnt = 4;
    sp->chars[0] = 'G';
    sp->chars[1] = 'M';
    sp->chars[2] = 'T';
}

/*
** gmtsub is to gmtime as localsub is to localtime.
*/

static struct tm *
gmtsub(const time_t *const timep, const int_fast32_t offset,
       struct tm *const tmp)
{
	register struct tm *	result;

	if (!gmt_is_set) {
		gmt_is_set = true;
//		if (gmtptr != NULL)
			gmtload(gmtptr);
	}
	result = timesub(timep, offset, gmtptr, tmp);
#ifdef TM_ZONE
	/*
	** Could get fancy here and deliver something such as
	** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
	** but this is no time for a treasure hunt.
	*/
	tmp->TM_ZONE = offset ? wildabbr : gmtptr ? gmtptr->chars : gmt;
#endif /* defined TM_ZONE */
	return result;
}

/*
** Return the number of leap years through the end of the given year
** where, to make the math easy, the answer for year zero is defined as zero.
*/

static int
leaps_thru_end_of(register const int y)
{
	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
		-(leaps_thru_end_of(-(y + 1)) + 1);
}

static struct tm *
timesub(const time_t *const timep, const int_fast32_t offset,
	register const struct state *const sp,
	register struct tm *const tmp)
{
	register const struct lsinfo *	lp;
	register time_t			tdays;
	register int			idays;	/* unsigned would be so 2003 */
	register int_fast64_t		rem;
	int				y;
	register const int *		ip;
	register int_fast64_t		corr;
	register int			hit;
	register int			i;

	corr = 0;
	hit = 0;
	i = (sp == NULL) ? 0 : sp->leapcnt;
	while (--i >= 0) {
		lp = &sp->lsis[i];
		if (*timep >= lp->ls_trans) {
			if (*timep == lp->ls_trans) {
				hit = ((i == 0 && lp->ls_corr > 0) ||
					lp->ls_corr > sp->lsis[i - 1].ls_corr);
				if (hit)
					while (i > 0 &&
						sp->lsis[i].ls_trans ==
						sp->lsis[i - 1].ls_trans + 1 &&
						sp->lsis[i].ls_corr ==
						sp->lsis[i - 1].ls_corr + 1) {
							++hit;
							--i;
					}
			}
			corr = lp->ls_corr;
			break;
		}
	}
	y = EPOCH_YEAR;
	tdays = *timep / SECSPERDAY;
	rem = *timep - tdays * SECSPERDAY;
	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
		int		newy;
		register time_t	tdelta;
		register int	idelta;
		register int	leapdays;

		tdelta = tdays / DAYSPERLYEAR;
		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
		       && tdelta <= INT_MAX))
			return NULL;
		idelta = (int) tdelta;
		if (idelta == 0)
			idelta = (tdays < 0) ? -1 : 1;
		newy = y;
		if (increment_overflow(&newy, idelta))
			return NULL;
		leapdays = leaps_thru_end_of(newy - 1) -
			leaps_thru_end_of(y - 1);
		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
		tdays -= leapdays;
		y = newy;
	}
	{
		register int_fast32_t	seconds;

		seconds = (int_fast32_t) (tdays * SECSPERDAY);
		tdays = seconds / SECSPERDAY;
		rem += seconds - tdays * SECSPERDAY;
	}
	/*
	** Given the range, we can now fearlessly cast...
	*/
	idays = (int) tdays;
	rem += offset - corr;
	while (rem < 0) {
		rem += SECSPERDAY;
		--idays;
	}
	while (rem >= SECSPERDAY) {
		rem -= SECSPERDAY;
		++idays;
	}
	while (idays < 0) {
		if (increment_overflow(&y, -1))
			return NULL;
		idays += year_lengths[isleap(y)];
	}
	while (idays >= year_lengths[isleap(y)]) {
		idays -= year_lengths[isleap(y)];
		if (increment_overflow(&y, 1))
			return NULL;
	}
	tmp->tm_year = y;
	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
		return NULL;
	tmp->tm_yday = idays;
	/*
	** The "extra" mods below avoid overflow problems.
	*/
	tmp->tm_wday = EPOCH_WDAY +
		((y - EPOCH_YEAR) % DAYSPERWEEK) *
		(DAYSPERNYEAR % DAYSPERWEEK) +
		leaps_thru_end_of(y - 1) -
		leaps_thru_end_of(EPOCH_YEAR - 1) +
		idays;
	tmp->tm_wday %= DAYSPERWEEK;
	if (tmp->tm_wday < 0)
		tmp->tm_wday += DAYSPERWEEK;
	tmp->tm_hour = (int) (rem / SECSPERHOUR);
	rem %= SECSPERHOUR;
	tmp->tm_min = (int) (rem / SECSPERMIN);
	/*
	** A positive leap second requires a special
	** representation. This uses "... ??:59:60" et seq.
	*/
	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
	ip = mon_lengths[isleap(y)];
	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
		idays -= ip[tmp->tm_mon];
	tmp->tm_mday = (int) (idays + 1);
	tmp->tm_isdst = 0;
#ifdef TM_GMTOFF
	tmp->TM_GMTOFF = offset;
#endif /* defined TM_GMTOFF */
	return tmp;
}

/*
** Adapted from code provided by Robert Elz, who writes:
**	The "best" way to do mktime I think is based on an idea of Bob
**	Kridle's (so its said...) from a long time ago.
**	It does a binary search of the time_t space. Since time_t's are
**	just 32 bits, its a max of 32 iterations (even at 64 bits it
**	would still be very reasonable).
*/

#ifndef WRONG
#define WRONG	(-1)
#endif /* !defined WRONG */

/*
** Normalize logic courtesy Paul Eggert.
*/

static int
increment_overflow(int *const ip, int j)
{
	register int const	i = *ip;

	/*
	** If i >= 0 there can only be overflow if i + j > INT_MAX
	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
	** If i < 0 there can only be overflow if i + j < INT_MIN
	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
	*/
	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
		return true;
	*ip += j;
	return false;
}

static int
increment_overflow32(int_fast32_t *const lp, int const m)
{
	register int_fast32_t const	l = *lp;

	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
		return true;
	*lp += m;
	return false;
}

static int
normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
{
	register int	tensdelta;

	tensdelta = (*unitsptr >= 0) ?
		(*unitsptr / base) :
		(-1 - (-1 - *unitsptr) / base);
	*unitsptr -= tensdelta * base;
	return increment_overflow(tensptr, tensdelta);
}

static int
normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
		     const int base)
{
	register int	tensdelta;

	tensdelta = (*unitsptr >= 0) ?
		(*unitsptr / base) :
		(-1 - (-1 - *unitsptr) / base);
	*unitsptr -= tensdelta * base;
	return increment_overflow32(tensptr, tensdelta);
}

static int
tmcomp(register const struct tm *const atmp,
       register const struct tm *const btmp)
{
	register int	result;

	if (atmp->tm_year != btmp->tm_year)
		return atmp->tm_year < btmp->tm_year ? -1 : 1;
	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
		(result = (atmp->tm_min - btmp->tm_min)) == 0)
			result = atmp->tm_sec - btmp->tm_sec;
	return result;
}

static time_t
time2sub(struct tm *const tmp,
	 struct tm *(*const funcp)(const time_t *, int_fast32_t, struct tm *),
	 const int_fast32_t offset,
	 int *const okayp,
	 const int do_norm_secs)
{
	register const struct state *	sp;
	register int			dir;
	register int			i, j;
	register int			saved_seconds;
	register int_fast32_t			li;
	register time_t			lo;
	register time_t			hi;
	int_fast32_t				y;
	time_t				newt;
	time_t				t;
	struct tm			yourtm, mytm;

	*okayp = false;
	yourtm = *tmp;
	if (do_norm_secs) {
		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
			SECSPERMIN))
				return WRONG;
	}
	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
		return WRONG;
	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
		return WRONG;
	y = yourtm.tm_year;
	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
		return WRONG;
	/*
	** Turn y into an actual year number for now.
	** It is converted back to an offset from TM_YEAR_BASE later.
	*/
	if (increment_overflow32(&y, TM_YEAR_BASE))
		return WRONG;
	while (yourtm.tm_mday <= 0) {
		if (increment_overflow32(&y, -1))
			return WRONG;
		li = y + (1 < yourtm.tm_mon);
		yourtm.tm_mday += year_lengths[isleap(li)];
	}
	while (yourtm.tm_mday > DAYSPERLYEAR) {
		li = y + (1 < yourtm.tm_mon);
		yourtm.tm_mday -= year_lengths[isleap(li)];
		if (increment_overflow32(&y, 1))
			return WRONG;
	}
	for ( ; ; ) {
		i = mon_lengths[isleap(y)][yourtm.tm_mon];
		if (yourtm.tm_mday <= i)
			break;
		yourtm.tm_mday -= i;
		if (++yourtm.tm_mon >= MONSPERYEAR) {
			yourtm.tm_mon = 0;
			if (increment_overflow32(&y, 1))
				return WRONG;
		}
	}
	if (increment_overflow32(&y, -TM_YEAR_BASE))
		return WRONG;
	yourtm.tm_year = y;
	if (yourtm.tm_year != y)
		return WRONG;
	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
		saved_seconds = 0;
	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
		/*
		** We can't set tm_sec to 0, because that might push the
		** time below the minimum representable time.
		** Set tm_sec to 59 instead.
		** This assumes that the minimum representable time is
		** not in the same minute that a leap second was deleted from,
		** which is a safer assumption than using 58 would be.
		*/
		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
			return WRONG;
		saved_seconds = yourtm.tm_sec;
		yourtm.tm_sec = SECSPERMIN - 1;
	} else {
		saved_seconds = yourtm.tm_sec;
		yourtm.tm_sec = 0;
	}
	/*
	** Do a binary search (this works whatever time_t's type is).
	*/
	if (!TYPE_SIGNED(time_t)) {
		lo = 0;
		hi = lo - 1;
	} else {
		lo = 1;
		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
			lo *= 2;
		hi = -(lo + 1);
	}
	for ( ; ; ) {
		t = lo / 2 + hi / 2;
		if (t < lo)
			t = lo;
		else if (t > hi)
			t = hi;
		if ((*funcp)(&t, offset, &mytm) == NULL) {
			/*
			** Assume that t is too extreme to be represented in
			** a struct tm; arrange things so that it is less
			** extreme on the next pass.
			*/
			dir = (t > 0) ? 1 : -1;
		} else	dir = tmcomp(&mytm, &yourtm);
		if (dir != 0) {
			if (t == lo) {
				if (t == time_t_max)
					return WRONG;
				++t;
				++lo;
			} else if (t == hi) {
				if (t == time_t_min)
					return WRONG;
				--t;
				--hi;
			}
			if (lo > hi)
				return WRONG;
			if (dir > 0)
				hi = t;
			else	lo = t;
			continue;
		}
		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
			break;
		/*
		** Right time, wrong type.
		** Hunt for right time, right type.
		** It's okay to guess wrong since the guess
		** gets checked.
		*/
		sp = (const struct state *) gmtptr;
		if (sp == NULL)
			return WRONG;
		for (i = sp->typecnt - 1; i >= 0; --i) {
			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
				continue;
			for (j = sp->typecnt - 1; j >= 0; --j) {
				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
					continue;
				newt = t + sp->ttis[j].tt_gmtoff -
					sp->ttis[i].tt_gmtoff;
				if ((*funcp)(&newt, offset, &mytm) == NULL)
					continue;
				if (tmcomp(&mytm, &yourtm) != 0)
					continue;
				if (mytm.tm_isdst != yourtm.tm_isdst)
					continue;
				/*
				** We have a match.
				*/
				t = newt;
				goto label;
			}
		}
		return WRONG;
	}
label:
	newt = t + saved_seconds;
	if ((newt < t) != (saved_seconds < 0))
		return WRONG;
	t = newt;
	if ((*funcp)(&t, offset, tmp))
		*okayp = true;
	return t;
}

static time_t
time2(struct tm * const	tmp,
      struct tm * (*const funcp)(const time_t *, int_fast32_t, struct tm *),
      const int_fast32_t offset,
      int *const okayp)
{
	time_t	t;

	/*
	** First try without normalization of seconds
	** (in case tm_sec contains a value associated with a leap second).
	** If that fails, try with normalization of seconds.
	*/
	t = time2sub(tmp, funcp, offset, okayp, false);
	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, true);
}

static time_t
time1(struct tm *const tmp,
      struct tm *(*const funcp) (const time_t *, int_fast32_t, struct tm *),
      const int_fast32_t offset)
{
	register time_t			t;
	register const struct state *	sp;
	register int			samei, otheri;
	register int			sameind, otherind;
	register int			i;
	register int			nseen;
	int				seen[TZ_MAX_TYPES];
	int				types[TZ_MAX_TYPES];
	int				okay;

	if (tmp == NULL) {
		errno = EINVAL;
		return WRONG;
	}
	if (tmp->tm_isdst > 1)
		tmp->tm_isdst = 1;
	t = time2(tmp, funcp, offset, &okay);
	if (okay)
		return t;
	if (tmp->tm_isdst < 0)
#ifdef PCTS
		/*
		** POSIX Conformance Test Suite code courtesy Grant Sullivan.
		*/
		tmp->tm_isdst = 0;	/* reset to std and try again */
#else
		return t;
#endif /* !defined PCTS */
	/*
	** We're supposed to assume that somebody took a time of one type
	** and did some math on it that yielded a "struct tm" that's bad.
	** We try to divine the type they started from and adjust to the
	** type they need.
	*/
	sp = (const struct state *) gmtptr;
	if (sp == NULL)
		return WRONG;
	for (i = 0; i < sp->typecnt; ++i)
		seen[i] = false;
	nseen = 0;
	for (i = sp->timecnt - 1; i >= 0; --i)
		if (!seen[sp->types[i]]) {
			seen[sp->types[i]] = true;
			types[nseen++] = sp->types[i];
		}
	for (sameind = 0; sameind < nseen; ++sameind) {
		samei = types[sameind];
		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
			continue;
		for (otherind = 0; otherind < nseen; ++otherind) {
			otheri = types[otherind];
			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
				continue;
			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
					sp->ttis[samei].tt_gmtoff;
			tmp->tm_isdst = !tmp->tm_isdst;
			t = time2(tmp, funcp, offset, &okay);
			if (okay)
				return t;
			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
					sp->ttis[samei].tt_gmtoff;
			tmp->tm_isdst = !tmp->tm_isdst;
		}
	}
	return WRONG;
}

time_t
_bson_timegm(struct tm *const tmp)
{
	if (tmp != NULL)
		tmp->tm_isdst = 0;
	return time1(tmp, gmtsub, 0L);
}

#endif