The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.
   [1]PNAS
   [2]Proceedings of the National Academy of Sciences of the United States
   of America

   [3]Skip to main page content
     * [4]Info for Authors
     * [5]Editorial Board
     * [6]About
     * [7]Subscribe
     * [8]Advertise
     * [9]Contact
     * [10]Feedback
     * [11]Site Map

     * [12]INTERFERin siRNA Transfection Reagent
     * [13]Sign up for PNAS eTOCs
     * [14]Science Sessions: PNAS Podcast Program

     * Institution: UNIV COLORADO HLTH SCI CTR
     * [15]Sign In as Member / Individual

 §1§ The crystal structure of a multifunctional protein: Phosphoglucose
isomerase/autocrine motility factor/neuroleukin §1§

    1. [16]Yuh-Ju Sun [17]*,
    2. [18]Chia-Cheng Chou [19]* , [20]†,
    3. [21]Wei-Shone Chen [22]‡,
    4. [23]Rong-Tsun Wu [24]§,
    5. [25]Menghsiao Meng [26]¶, and
    6. [27]Chwan-Deng Hsiao [28]* , [29]‖

    1.


    ^*Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
    11529, Republic of China; ^†Graduate Institute of Life Science,
    National Defense Medical Center, Taipei, Taiwan 11217, Republic of
    China; ^‡Veterans General Hospital, Taipei, Taiwan 11221, Republic of
    China; ^§Graduate Institute of Biopharmaceutical Science, National
    Yang-Ming University, Taipei, Taiwan 11221, Republic of China; and
    ^¶Graduate Institute of Agricultural Biotechnology, National Chung
    Hsing University, Taichung, Taiwan 40227, Republic of China

    1. Edited by Robert Huber, Max Planck Institute for Biochemistry,
       Martinsried, Germany, and approved March 20, 1999 (received for
       review December 21, 1998)


   [30]Next Section

 §2§ Abstract §2§

   Phosphoglucose isomerase (PGI) plays a central role in both the
   glycolysis and the gluconeogenesis pathways. We present here the
   complete crystal structure of PGI from Bacillus stearothermophilus at
   2.3-Å resolution. We show that PGI has cell-motility-stimulating
   activity on mouse colon cancer cells similar to that of endogenous
   autocrine motility factor (AMF). PGI can also enhance neurite outgrowth
   on neuronal progenitor cells similar to that observed for neuroleukin.
   The results confirm that PGI is neuroleukin and AMF. PGI has an open
   twisted α/β structural motif consisting of two globular domains and two
   protruding parts. Based on this substrate-free structure, together with
   the previously published biological, biochemical, and modeling results,
   we postulate a possible substrate-binding site that is located within
   the domains’ interface for PGI and AMF. In addition, the structure
   provides evidence suggesting that the top part of the large domain
   together with one of the protruding loops might participate in inducing
   the neurotrophic activity.

   Phosphoglucose isomerase (PGI; EC [31]5.3.1.9) is a glycolytic enzyme
   that catalyzes the reversible isomerization of glucose-6-phosphate to
   fructose-6-phosphate. PGI deficiency in humans leads to nonspherocytic
   hemolytic disease ([32]1, [33]2). In addition, the serum activity of
   PGI has been established as a tumor marker in human cancer patients
   ([34]3, [35]4), and elevation in PGI activity is closely correlated
   with metastasis ([36]5, [37]6).

   Recently, it has been shown that several important proteins,
   neuroleukin (NLK; refs. [38]7–[39]9), autocrine motility factor (AMF;
   refs. [40]10 and [41]11), and maturation factor (MF; refs. [42]11 and
   [43]12), are closely related, if not identical, to PGI. Mouse and human
   NLKs can be aligned with pig muscle PGI without any sequence insertions
   or deletions. Including conservative substitutions, mouse NLK has 87%
   and 90% sequence identity with human NLK ([44]8) and pig muscle PGI
   ([45]7), respectively. The primary structural differences are mostly
   conservative substitutions that probably reflect species and organ
   specificities.

   NLK is a neurotrophic growth factor. It promotes motor neuron
   regeneration in vivo, fosters the survival of peripheral and central
   neurons in vitro, and affects B cell Ig synthesis ([46]13, [47]14).
   Interestingly, the dimeric form of NLK carries out its isomerase
   activity, whereas the monomeric form of the protein is responsible for
   the neurotrophic activity ([48]9). In the presence of monomeric PGI,
   neuroblastoma cells have enhanced neurite extension and a reduced
   proliferation rate ([49]9). These results suggest that PGI has a growth
   factor-like activity and that PGI is potentially related to NLK.

   AMF ([50]10, [51]15–[52]17) represents a class of cytokines: a group of
   proteins that control cell growth and differentiation in embryogenesis,
   immunity, and inflammation ([53]18). They are produced locally and act
   in an autocrine or paracrine manner. AMF was identified originally by
   its ability to induce directed random migration of cells. It has since
   been implicated in stimulating motility during cell invasion and
   metastasis ([54]10, [55]15).

   AMF regulates growth and motility by a receptor-mediated signaling
   pathway. On signal transduction, AMF binds to a cell surface
   glycoprotein of 78 kDa ([56]19–[57]21), implying that AMF is the
   natural ligand of the 78-kDa glycoprotein ([58]17). AMF secreted by
   Gc-4 PF murine fibrosarcoma cells ([59]10) has PGI activity, whereas
   rabbit heart PGI can stimulate mouse fibrosarcoma cell motility similar
   to that of endogenous AMF. More importantly, two specific PGI
   inhibitors, 6-phosphogluconic acid and erythrose 4-phosphate, can
   inhibit the isomerase activity of PGI ([60]22) and abolish the
   AMF-induced cell motility ([61]10). The results support the notion that
   murine AMF is a PGI.

   MF mediates the differentiation of human myeloid leukemic HL-60 cells
   to terminal monocytic cells ([62]12). Interestingly, the purified MF
   has been shown to have PGI enzymatic activity, and the purified PGI
   also has the differentiation property for leukemia cells ascribed to
   the MF ([63]12). The amino acid sequence of a tryptic and the enzyme
   cleavage sites of MF is 100% homologous to both NLK and PGI ([64]12).

   Although studies on PGI have proved a close enzymatic relationship with
   NLK, AMF, and MF, nothing is known about the structural basis of these
   activities. Previously, we have reported the expression of two Bacillus
   stearothermophilus PGIs (PGI-A and PGI-B) in Escherichia coli ([65]23).
   In this study, we show that Bacillus PGI stimulates the cell motility
   of CT-26 mouse colon tumor cells and enhances the neurite outgrowth on
   neuronal progenitor cells. We also present the crystal structure of
   PGI-B at 2.3-Å resolution by x-ray diffraction.
   [66]Previous Section[67]Next Section

 §2§ MATERIALS AND METHODS §2§

 §3§ Crystallization and Structure Determination. §3§

   The isolation, purification, and crystallization of PGI have been
   reported ([68]23). Crystals were grown by the hanging-drop
   vapor-diffusion method from solutions containing ammonium phosphate as
   the precipitant. The crystals belong to space group I222 with the cell
   dimensions a = 75.1 Å, b = 93.7 Å, and c = 171.9 Å; one molecule per
   asymmetric unit. After an extensive search, two useful derivatives,
   KAu(CN)[2] and HgI[2], were obtained by soaking native crystals in
   heavy-atom solutions. All data used for structure determination were
   collected on a Rigaku (Tokyo) R-Axis II Imaging Plate mounted on a
   Rigaku RU300 rotating-anode. The data were indexed, integrated, and
   scaled by using denzo and scalepack (ref. [69]24; Table [70]1).
   View this table:
     * [71]In this window
     * [72]In a new window

   Table 1

   X-ray crystallography data

   The heavy-atom positions were located by difference Patterson
   techniques and refined by using the CCP4 (Collaborative Computational
   Project, November 4, 1994) implementation of mlphare ([73]24). The
   isir-isas program ([74]25) was used to generate the initial miras
   (multiple isomorphous replacement including anomalous scattering)
   phases at 3.5-Å resolution followed by phase extension to 3.0 Å. The
   resulting electron-density map showed a molecular boundary indicative
   of a two-domain structure and evidence of several α-helices and β-sheet
   strands in both domains. The initial miras phases were improved further
   by the program dm ([75]26) by using a combination of solvent
   flattening, histogram mapping, and Sayre’s equation (skeletonization
   was not included in this calculation). The miras map showed continuous
   electron density with well defined side chains for almost the entire
   molecule. The initial model, which contained 440 residues and 3,508
   nonhydrogen atoms, resulted in a conventional R factor of 39.8% from 8
   Å to 2.8 Å with 2σ(F).

   The model was refined against data between 8.0 Å and 2.3 Å by simulated
   annealing and positional refinement by using the program x-plor 3.1
   ([76]27). Individual atoms were assigned isotropic B factors, which
   were refined during the latter stages of the refinement. Fig. [77]1
   shows a sample final omitted (2F [o] – F [c]) map. The final model
   contains 3,699 nonhydrogen atoms, including 184 oxygen atoms from water
   molecules. The first and the last two amino acid residues are
   presumably disordered in the crystal structure. The R factor is 18.5%
   for all 2σ(F) data between 8.0-Å and 2.3-Å resolution. By using a 10%
   reflection test set (2,319 reflections), the R [free]-value ([78]28) is
   25.8%. The model has good stereochemistry with rms deviations in bond
   lengths and angles of 0.012 Å and 1.348°, respectively. Analysis of the
   Ramachandran plot ([79]29) shows no violations of accepted backbone
   torsion angles. Atomic coordinates have been deposited with the Protein
   Data Bank (ref. [80]30; ID code [81]2PGI).
   [82]Figure 1
   View larger version:
     * [83]In this window
     * [84]In a new window

     * [85]Download as PowerPoint Slide

   Figure 1

   The omitted 2F [o] – F [c] electron density map of PGI from regions of
   the proposed substrate-binding site. The map was calculated by omitting
   Lys-139, Glu-285, His-306, and Lys-420 from the x-ray model.
   Simulated-annealing refinement was performed with a 3-Å spherical shell
   of fixed atoms surrounding the omitted regions and was contoured at the
   1.0-σ level. Residues His-306′ and Ser-307′ belong to the
   symmetry-related subunit in a dimer.

 §3§ Cell-Motility Assay. §3§

   Cell motility of mouse CT-26 cells was measured by the method described
   by Lin et al. ([86]31) with minor modifications.
   Polyvinylpyrrolidone-free polycarbonate filters (Nuclepore; 8-μm pore
   size) were soaked in 0.5 M acetic acid overnight. The filters were
   washed with distilled water and coated with 50 μl of matrigel for 2 h.
   Cells were placed on the top of a Boyden chamber at a cell dose of 5 ×
   10^4 per 200 μl in MEM with 10% FBS. Incubation was carried out at 37°C
   for 8 h. The filters were removed and fixed in 4% paraformaldehyde for
   15 min at room temperature. Cells on the upper filter surface were
   removed carefully with a cotton swab. The filters were stained with
   hematoxylin for 40 min. Cells on the lower filter surface were counted
   under a light microscope.

 §3§ Neurite-Outgrowth Assay. §3§

   Morphological responses to PGI of rat epidermal growth factor
   (EGF)-responsive neuronal embryonic progenitor cells ([87]32, [88]33)
   were assayed. The serum-free culture medium was made up of an equal
   mixture of DMEM and F-12 nutrient (GIBCO), supplemented with insulin
   (25 μg/ml), transferrin (50 μg/ml), progesterone (20 nM), putrescine
   (100 μM), and selenium chloride (30 nM). Brains were removed from
   17-day-old Sprague–Dawley rat embryos and dissociated mechanically with
   a fire-polished Pasteur pipette. After culturing for 4–5 days in the
   serum-free medium supplemented with 20 ng/ml EGF, the primary
   EGF-responsive embryonic neuronal progenitor cells were dissociated
   into single cells. The cells were then transferred to 96-well plates
   and cultivated in the serum-free medium supplemented with EGF (10
   ng/ml) in the presence or absence of PGI.
   [89]Previous Section[90]Next Section

 §2§ RESULTS AND DISCUSSION §2§

 §3§ The Overall Structure. §3§

   The overall folding of a PGI monomer is shown in Fig. [91]2. The
   molecule is divided clearly into two globular domains (designated as
   large and small domains) and an “arm-like” C-terminal tail. Both the
   large and the small domain have a central core of a β-pleated sheet
   flanked by α-helices to form a typical α/β folding motif. The large
   domain also contains a protruding loop region diametrical to the
   C-terminal tail. Therefore, the overall shape of the subunit is
   somewhat ellipsoidal with an “arm-like” structure on each side.
   [92]Figure 2
   View larger version:
     * [93]In this window
     * [94]In a new window

     * [95]Download as PowerPoint Slide

   Figure 2

   A ribbon drawing ([96]64, [97]65) of the PGI monomer with the small
   domain on the top, the large domain on the bottom, and the C-terminal
   domain on the left. α-Helices are colored gold and labeled α1–α18.
   β-Strands are in green and labeled β1–β12. The proposed
   substrate-binding site is indicated by an asterisk. The
   crystallographic 2-fold axis that runs through the dimer is shown by an
   arrow.

   The secondary structure of the large domain containing the N-terminal
   of the protein is built from two separate peptide segments (residues
   2–34 and 236–403). This domain has two antiparallel strands (β10 and
   β11) that are placed roughly perpendicularly to a central five-stranded
   β-sheet (β1, β7, β8, β9, and β12). Consequently, β10 and β11 form an
   arm-like protruding loop. There are two (α14 and α15) and three
   α-helices (α12, α13, and α16) on either side of the central
   five-stranded β-sheet. From the α3 helix, the chain progresses to form
   the entire supersecondary structure of the small domain.

   The small domain encompasses residues 56–217. It has also a
   five-stranded β-sheet (β2, β3, β4, β5, and β6) at the core. The β-sheet
   is sandwiched by three helices on one side (α4, α5, and α10) and four
   α-helices on the other (α6, α7, α8, and α9), forming a typical open
   twisted α/β folding structure. Lastly, the C-terminal 32 amino acids
   (residues 414–445) of the protein fold into two consecutive helices
   (α17 and α18) linked by a short turn.

   Because the large domain is built from two separate peptide segments,
   it is connected to the small domain by two helices, α3 (residues 43–51)
   and α11 (residues 220–236). Despite the discontinuity in the large
   domain, the sheet topologies are similar in both domains. All the
   β-strands in both domains are parallel, except for the β1 and the
   protruding loop (β10 and β11) in the large domain, which are
   antiparallel. The β-strands of the small domain point toward the
   C-terminal tail, whereas those from the large domain are oriented
   antiparallel to those of the small domain and point toward the
   protruding loop region. The arrangement of the small globular domain
   and the C-terminal tail results in a slight cleft wherein the substrate
   might be bound.

   The functional form of the PGI is a dimer. However, there is only a
   single subunit in the crystallographic asymmetric unit. The dimer is
   globular in shape with dimensions of ≈78 Å × 75 Å × 50 Å. The subunits
   associate in an arm-to-arm hug fashion with intimate contacts and form
   a hydrophilic channel that coincides with the crystallographic 2-fold
   axis that runs through the dimer as indicated by an arrow in Fig.
   [98]2. Most of the monomer–monomer interactions are formed among
   helices and loops, because the β-sheets are in the cores and sandwiched
   by helices. Intersubunit contacts are constituted mainly among β2, α6,
   α7, α9, α13, α14, α15, α17, α18, and the loop regions. The dimer is
   stabilized by a total of 76 intermolecular hydrogen bonds (≤3.5 Å) as
   well as van der Waals interactions.

 §3§ Structure Comparison with Other Isomerases. §3§

   A crystal structure of pig muscle PGI was previously determined at
   3.5-Å resolution ([99]34, [100]35). However, because of the resolution
   limit and the lack of sequence information, the C[α] backbone of pig
   PGI could not be traced throughout the whole structure and not all the
   amino acid side chains could be defined. In that model, 85% of the C[α]
   atoms were built, and both the N and the C termini were assigned
   tentatively. Pig PGI is a dimeric enzyme and reportedly has an α/β
   folding motif. Each subunit consists of a large and a small domain. The
   large domain contains a six-stranded parallel β-sheet surrounded by
   α-helices. The small domain contains a four-stranded parallel
   β-structure surrounded by helices and an irregularly folded chain.
   Similar to the PGI structure of B. stearothermophilus, the subunit is
   somewhat ellipsoidal, and a slight cleft is observed between the two
   domains.

   It is interesting to compare the three-dimensional structure of PGI
   with the structures of triose phosphate isomerase (TPI; ref. [101]36)
   and d-xylose isomerase ([102]37–[103]39). TPI catalyses the
   interconversion between d-glyceraldehyde-3-phosphate and
   dihydroxyacetone phosphate ([104]36), whereas xylose isomerase is
   involved in the transposition of xylose to xylulose. A
   “hydride-transfer” mechanism has been proposed for xylose isomerase
   ([105]40–[106]43). However, biological and biochemical studies
   ([107]38, [108]44) suggest that both PGI and TPI use instead a
   “proton-transfer” mechanism. The proton-transfer mechanism involves the
   formation of an cis-enediol intermediate by transferring a proton
   between C1 and C2 of the sugar ring. Although different mechanisms
   pertain to the triose phosphate and the xylose isomerization reactions,
   both enzymes form the typical eight-stranded α/β barrel (TIM barrel)
   motif structure. In contrast, the PGI model from B. stearothermophilus
   has an open twisted α/β structure.

 §3§ PGI Stimulates Cell Motility. §3§

   Rabbit PGI has been shown to induce directed random migration of tumor
   cells and implicated as an AMF ([109]10, [110]17). Results from amino
   acid sequencing analysis and immunological cross-reactivity also
   suggest that mouse AMF is identical or closely related to PGI/NLK.
   Whether B. stearothermophilus PGI has AMF activity can be addressed
   directly by observing its migratory-stimulation activity in
   cell-motility assays. Purified PGI from B. stearothermophilus
   stimulates CT-26 mouse colon cancer cell motility in a dose-dependent
   fashion and exerts maximal stimulating activity between 10 pg/ml and
   100 pg/ml. Fig. [111]3 is a pictorial demonstration of the motility
   assay and the stimulatory effect on CT-26 cells in the absence (Fig.
   [112]3 A) or presence (Fig. [113]3 B and C) of PGI. The results are
   consistent with those observed by Watanabe et al. ([114]10).
   [115]Figure 3
   View larger version:
     * [116]In this window
     * [117]In a new window

     * [118]Download as PowerPoint Slide

   Figure 3

   Dose-dependent motility stimulation of CT-26 mouse colon cancer cells
   by purified B. stearothermophilus PGI. CT-26 cells were plated in
   culture medium in the absence or various concentrations of PGI.
   Representative photomicrographs of cells plated in the absence (A) or
   presence of 10 pg/ml (B) or 100 pg/ml (C) PGI are shown.

 §3§ Identification of a Putative Substrate-Binding Site of PGI/AMF. §3§

   After finding that Bacillus PGI is functionally equivalent to AMF, the
   next obvious issue is to locate the substrate-binding site on PGI/AMF.
   Because PGI and AMF share the same substrate and inhibitors (i.e.,
   carbohydrate phosphates; ref. [119]10), the implicated binding site
   should also be the same for both proteins.

   The genes coding for PGI have been isolated from a variety of sources
   ranging from bacteria to mammals ([120]35, [121]45–[122]47). Two
   regions of conserved amino acids,
   [LIVM]-G-G-R-[FY]-S-[LIVM]-x-[ST]-A-[LIVM]-G and
   [FY]-D-Q-x-G-V-E-x-x-K, have been identified (Fig. [123]4) and are
   documented as signature patterns for the PGI ([124]48) superfamily.
   Members of this superfamily include B. stearothermophilus PGI, pig
   muscle PGI, human PGI/NLK/AMF, and mouse PGI/NLK. Residues inside the
   square brackets above represent the evolutionarily conserved residues.
   The corresponding regions are residues 198–210 from the small domain
   and 411–420 from the large domain in B. stearothermophilus PGI.
   Interestingly, these two conserved regions are located within the
   slight cleft area in our model. Therefore, it is reasonable to propose
   that all PGIs have the same evolutionary origin and employ the same
   catalytic mechanism.
   [125]Figure 4
   View larger version:
     * [126]In this window
     * [127]In a new window

     * [128]Download as PowerPoint Slide

   Figure 4

   Multiple sequence alignment of the PGI superfamily. Amino acid
   sequences of Bacillus PGI-B, Bacillus PGI-A, and PGI from pig, human,
   and mouse were aligned. Residues that are identical among all five
   sequences are highlighted in red. Positions of deletions are indicated
   by dashes. Two signature patterns
   ([LIVM]-G-G-R-[FY]-S-[LIVM]-x-[ST]-A-[LIVM]-G and
   [FY]-D-Q-x-G-V-E-x-x-K) of the PGI superfamily are colored in green.
   Amino acids that form the putative substrate-binding sites are denoted
   by asterisks.

   A base-catalyzed mechanism has been proposed for the interconversion of
   aldose and ketose via a cis-enediol intermediate ([129]49, [130]50).
   Based on chemical modification and affinity-labeling experiments,
   histidine ([131]51), lysine ([132]52), glutamate ([133]53), and
   arginine ([134]54) residues have been postulated to be involved in the
   catalytic process. Results from site-directed mutagenesis and kinetic
   studies ([135]47) also suggested that Lys-139, Arg-202, Lys-289, and
   Lys-420 are located in the active site of the B. stearothermophilus
   PGI. As determined by the crystallographic studies of pig ([136]34,
   [137]35) and rabbit PGIs ([138]2), the active site is situated in a
   cleft between the large and small domains of the monomer and is formed
   by the association of the two subunits. Their results showed that
   histidine and glutamate residues might be situated in the active site
   of PGI. Kugler et al. ([139]2) also pointed out that the histidine
   residue involved in enzymatic reaction is from the other subunit.
   Moreover, the involvement of lysine and arginine residues in the
   binding of phosphate groups by various enzymes, such as
   6-phosphofructo-2-kinase ([140]55, [141]56), glycogen phosphorylase b
   ([142]57), maltodextrin phosphorylase ([143]58), protein tyrosine
   phosphatase 1B ([144]59), and protein phosphatase 1 ([145]60), have
   been well studied.

   Based on the substrate-free PGI structure described in this work,
   together with the aforementioned biological and biochemical results, we
   carried out molecular-modeling studies. A possible binding-site
   geometry that may exist in a PGI-substrate (glucose-6-phosphate)
   complex was generated by minimizing the distance and neutralizing the
   opposite charges between the enzyme and the target substrate. A
   speculative model showing how glucose-6-phosphate could be docked into
   the putative PGI substrate-binding site is presented in Fig. [146]5.
   The possible substrate-binding site of PGI is a deep binding pocket
   located between the large domain, the small domain, and the C-terminal
   tail.
   [147]Figure 5
   View larger version:
     * [148]In this window
     * [149]In a new window

     * [150]Download as PowerPoint Slide

   Figure 5

   A ribbon drawing ([151]64, [152]65) showing the proposed
   substrate-binding site as determined by the substrate-free PGI
   structure. The glucose-6-phosphate is represented by balls and sticks
   and is colored in red (oxygen), deep blue (carbon) and magenta
   (phosphorus). The residues potentially involved in the enzymatic
   reaction are labeled by name.

   The isomerization reaction is initiated by a ring-opening step,
   followed by a proton-transfer process and a ring-closure procedure. In
   this postulated complex model, Arg-202, Glu-285, and His-306
   participate in the catalytic process. Lys-139 forms three salt bridges
   with the phosphate group to stabilize the substrate. Glu-417, Tyr-419,
   and Lys-420 interact with the hydroxyl groups of C3 and C4 of the
   substrate via hydrogen bonds. Glu-285 and His-306 are the two most
   likely candidates for the base-catalytic and proton-transfer steps in
   the phosphoglucose isomerization. It is interesting to point out that
   the His-306 positioned in this possible binding site is from the other
   subunit of the dimer. This positioning may explain why the active form
   of the isomerase is a dimer. All these important residues, except
   Tyr-419, are conserved in the multiple sequence alignment (Fig.
   [153]4). Certainly, crystal structures of the
   substrate/inhibitor-enzyme complex definitely are needed before the
   role of these residues can be defined explicitly.

 §3§ PGI Enhanced Neurite Outgrowth. §3§

   Many studies ([154]7, [155]8, [156]10, [157]61) have shown that PGI has
   a close functional relationship with NLK. Three different hypotheses
   were raised by Gurney (as described in ref. [158]8) to explain the
   potential relationship between PGI and NLK: (i) the enzymatic activity
   of PGI may account for the biological response to NLK; (ii) PGI may act
   as a carbohydrate-binding rather than receptor-binding ligand to
   trigger the biological response to NLK; and (iii) either PGI or a
   processed version of it may be a ligand for a cellular receptor.

   To verify that PGI from B. stearothermophilus has neurotrophic
   activity, we examined the morphological response to PGI administration
   by using rat EGF-responsive neuronal embryonic progenitor cells
   ([159]32, [160]33). Compared with controls (Fig. [161]6 A), the neurite
   extensions in these neuronal progenitor cells were significantly
   greater in number and longer in length when treated with PGI (Fig.
   [162]6 B–D). The results are consistent with the neurotrophic
   activities observed by Gurney et al. ([163]62) and Mizrachi ([164]9)
   and confirmed that PGI is NLK.
   [165]Figure 6
   View larger version:
     * [166]In this window
     * [167]In a new window

     * [168]Download as PowerPoint Slide

   Figure 6

   Morphological response of rat EGF-responsive neuronal embryonic
   progenitor cells promoted by PGI. (A) After 4 days of cultivation in
   the absence of PGI, the neuronal progenitor cells formed a single
   sphere of undifferentiated morphology, compared with a differentiated
   morphology of neurite outgrowth treated with 2 ng/ml PGI (B), 20 ng/ml
   PGI (C), and 200 ng/ml PGI (D).

   To identify the regions on PGI that are responsible for NLK activity,
   we carried out a molecular-surface study on our PGI model. Fig. [169]7
   shows the electrostatic surface potential of the B. stearothermophilus
   PGI monomer displayed by the program grasp ([170]63). The negatively
   charged surface (potential < 10 kT) is displayed in deep red, whereas
   the positively charged surface (potential > 10 kT) is in deep blue. The
   surface potential of the small domain and the C-terminal region is more
   neutral and is depicted mostly in white. We have proposed in the last
   section that the substrate-binding site for PGI/AMF is most likely
   seated in the junction where the large domain, small domain, and the
   C-terminal tail come together. In contrast, a strong acidic region is
   found on the top half of the large domain and the protruding loop
   (residues 329–352). These distinctive surface-potential regions may be
   responsible for the NLK activity of PGI. Moreover, Mizrachi ([171]9)
   reported that a synthetic peptide covering residues 401–421 of the
   rabbit NLK has cell proliferative activity. In our PGI model, the
   corresponding residues are 319–339 and located in &#x3b2;10 and the
   protruding loop. We tentatively proposed that the top part of the large
   domain and the protruding loop may play another biological function,
   such as the neurotrophic activity. However, these speculations need to
   be confirmed by further neurobiological and biochemical study.
   [172]Figure 7
   View larger version:
     * [173]In this window
     * [174]In a new window

     * [175]Download as PowerPoint Slide

   Figure 7

   Electrostatic surface potential on the PGI molecule displayed with the
   program grasp ([176]63). Negative potentials (<10 kT) are colored in
   deep red, and positive potentials (>10 kT) are colored in deep blue.
   The neutral surface potential regions are depicted in white. The
   orientation of the molecule is the same as in Fig. [177]2.
   [178]Previous Section[179]Next Section

 §2§ CONCLUSIONS §2§

   In the present study, we determined the three-dimensional structure of
   PGI from B. stearothermophilus at 2.3-Å resolution by x-ray
   crystallography. We also demonstrated by cell-migratory stimulation and
   neurotrophic-activity experiments that PGI has AMF and NLK activities.
   A putative substrate-binding site is proposed for further
   investigation. Our x-ray studies implicate several residues as
   important in the catalytic reaction. In addition, the structure
   provides evidence to suggest that the top part of the large domain and
   the protruding loop may participate in inducing neurotrophic activity
   for PGI/NLK. However, many questions, such as how PGI exerts its effect
   on nerve cells; how PGI performs its cell-motility activity; and how
   PGI switches its enzymatic and biological functions, remain unanswered.
   The complete high-resolution structure of PGI presented here offers a
   starting point for further crystallographic, biochemical, genetic, and
   neurobiological studies of PGI/NLK/AMF. The structure also provides a
   framework for understanding the structure of other PGI/NLK/AMFs from
   the same superfamily.
   [180]Previous Section[181]Next Section

 §2§ Acknowledgments §2§

   We are grateful to Dr. M. F. Tam of the Institute of Molecular Biology,
   Academia Sinica for helpful discussions. This work was supported in
   part by National Science Council Grant NSC87-2311-B-001-025-B21 (to
   C.-D.H.), Republic of China.
   [182]Previous Section[183]Next Section

 §2§ Footnotes §2§

     * [184]&#x21b5; &#x2016; To whom reprint requests should be addressed.
       e-mbhsiao{at}ccvax.sinica.edu.tw.
     * This paper was submitted directly (Track II) to the Proceedings
       Office.
     * Data deposition: The atomic coordinates have been deposited in the
       Protein Data Bank, Biology Department, Brookhaven National
       Laboratory, Upton, NY 11973 (PDB ID code [185]2PGI).
     * ABBREVIATIONS:

        PGI,
                phosphoglucose isomerase;

        AMF,
                autocrine motility factor;

        NLK,
                neuroleukin;

        MF,
                maturation factor;

        EGF,
                epidermal growth factor

     * Copyright © 1999, The National Academy of Sciences

   [186]Previous Section

 §2§ References §2§

    1. [187]&#x21b5;
         1. Welch S G
       (1971) Hum Hered 21:467–477, pmid:5169656.
       [188]CrossRef[189]Medline
    2. [190]&#x21b5;
         1. Kugler W ,
         2. Breme K ,
         3. Laspe P ,
         4. Muirhead H ,
         5. Davies C ,
         6. Winkler H ,
         7. Schroter W ,
         8. Lakomek M
       (1998) Hum Genet 103:450–454, pmid:9856489.
       [191]CrossRef[192]Medline[193]Web of Science
    3. [194]&#x21b5;
         1. Baumann M ,
         2. Kappl A ,
         3. Lang T ,
         4. Brand K ,
         5. Siegfried W ,
         6. Paterok E
       (1990) Cancer Invest 8:351–356, pmid:2207761.
       [195]Medline[196]Web of Science
    4. [197]&#x21b5;
         1. Baumgart E ,
         2. Fahimi H D ,
         3. Stich A ,
         4. Volkl A
       (1996) J Biol Chem 271:3846–3855, pmid:8632003.
       [198]Abstract/FREE Full Text
    5. [199]&#x21b5;
         1. Tor J ,
         2. Segura R M ,
         3. Pascual C ,
         4. Vilaseca J ,
         5. Guarner M L ,
         6. Schwartz S
       (1981) Med Clin (Barc) 77:236–239, pmid:7321637.
       [200]Medline
    6. [201]&#x21b5;
         1. Tor J ,
         2. Pascual C ,
         3. Segura R M ,
         4. Vilaseca J ,
         5. Schwartz S
       (1982) Rev Clin Esp 164:15–18, pmid:7071398.
       [202]Medline
    7. [203]&#x21b5;
         1. Chaput M ,
         2. Claes V ,
         3. Portetelle D ,
         4. Cludts I ,
         5. Cravador A ,
         6. Burny A ,
         7. Gras H ,
         8. Tartar A
       (1988) Nature (London) 332:454–455, pmid:3352744.
       [204]CrossRef[205]Medline
    8. [206]&#x21b5;
         1. Faik P ,
         2. Walker J I ,
         3. Redmill A A ,
         4. Morgan M J
       (1988) Nature (London) 332:455–457, pmid:3352745.
       [207]CrossRef[208]Medline
    9. [209]&#x21b5;
         1. Mizrachi Y
       (1989) J Neurosci Res 23:217–224, pmid:2547084.
       [210]CrossRef[211]Medline[212]Web of Science
   10. [213]&#x21b5;
         1. Watanabe H ,
         2. Takehana K ,
         3. Date M ,
         4. Shinozaki T ,
         5. Raz A
       (1996) Cancer Res 56:2960–2963, pmid:8674049.
       [214]Abstract/FREE Full Text
   11. [215]&#x21b5;
         1. Niinaka Y ,
         2. Paku S ,
         3. Haga A ,
         4. Watanabe H ,
         5. Raz A
       (1998) Cancer Res 58:2667–2674, pmid:9635595.
       [216]Abstract/FREE Full Text
   12. [217]&#x21b5;
         1. Xu W ,
         2. Seiter K ,
         3. Feldman E ,
         4. Ahmed T ,
         5. Chiao J W
       (1996) Blood 87:4502–4506, pmid:8639816.
       [218]Abstract/FREE Full Text
   13. [219]&#x21b5;
         1. Gurney M E ,
         2. Apatoff B R ,
         3. Spear G T ,
         4. Baumel M J ,
         5. Antel J P ,
         6. Bania M B ,
         7. Reder A T
       (1986) Science 234:574–581, pmid:3020690.
       [220]Abstract/FREE Full Text
   14. [221]&#x21b5;
         1. Gurney M E
       (1987) Immunol Rev 100:203–223, pmid:3326821.
       [222]CrossRef[223]Medline
   15. [224]&#x21b5;
         1. Liotta L A ,
         2. Mandler R ,
         3. Murano G ,
         4. Katz D A ,
         5. Gordon R K ,
         6. Chiang P K ,
         7. Schiffmann E
       (1986) Proc Natl Acad Sci USA 83:3302–3306, pmid:3085086.
       [225]Abstract/FREE Full Text
   16.
         1. Nabi I R ,
         2. Watanabe H ,
         3. Raz A
       (1990) Cancer Res 50:409–414, pmid:2153051.
       [226]Abstract/FREE Full Text
   17. [227]&#x21b5;
         1. Watanabe H ,
         2. Carmi P ,
         3. Hogan V ,
         4. Raz T ,
         5. Silletti S ,
         6. Nabi I R ,
         7. Raz A
       (1991) J Biol Chem 266:13442–13448, pmid:1649192.
       [228]Abstract/FREE Full Text
   18. [229]&#x21b5;
         1. Thomas H ,
         2. Balkwill F R
       (1991) Pharmacol Ther 52:307–330, pmid:1726476.
       [230]CrossRef[231]Medline
   19. [232]&#x21b5;
         1. Nabi I R ,
         2. Watanabe H ,
         3. Silletti S ,
         4. Raz A
       (1991) Experientia Suppl 59:163–177.
   20.
         1. Nabi I R ,
         2. Watanabe H ,
         3. Raz A
       (1992) Cancer Metastasis Rev 11:5–20, pmid:1324804.
       [233]CrossRef[234]Medline
   21. [235]&#x21b5;
         1. Silletti S ,
         2. Yao J P ,
         3. Pienta K J ,
         4. Raz A
       (1995) Int J Cancer 63:100–105, pmid:7558435.
       [236]Medline
   22. [237]&#x21b5;
         1. Gracy R W ,
         2. Tilley B E
       (1975) Methods Enzymol 41:392–400, pmid:1128273.
       [238]Medline
   23. [239]&#x21b5;
         1. Hsiao C D ,
         2. Chou C C ,
         3. Hsiao Y Y ,
         4. Sun Y J ,
         5. Meng M
       (1997) J Struct Biol 120:196–200, pmid:9417984.
       [240]CrossRef[241]Medline
   24. [242]&#x21b5;
         1. Otwinowski Z
         1. Sawyer L ,
         2. Isaacs N ,
         3. Bailey S
       (1993) in Proceedings of the CCP4 Study Weekend, eds Sawyer L ,
       Isaacs N , Bailey S (Sci. Eng. Res. Counc. Warrington, UK), pp
       56–62.
   25. [243]&#x21b5;
         1. Wang B-C
       (1985) Methods Enzymol 115:90–112, pmid:4079800.
       [244]Medline[245]Web of Science
   26. [246]&#x21b5;
         1. Cowtan K D
       (1996) Acta Crystallogr D 52:43–48, pmid:15299724.
       [247]CrossRef[248]Medline
   27. [249]&#x21b5;
         1. Brunger A T
       (1992) x-plor 3.1, A System for Crystallography and NMR (Yale Univ.
       New Haven, CT).
   28. [250]&#x21b5;
         1. Brunger A T
       (1992) Nature (London) 355:472–475.
       [251]CrossRef
   29. [252]&#x21b5;
         1. Ramakrishnan C ,
         2. Ramachandran G N
       (1965) Biophys J 5:909–933, pmid:5884016.
   30. [253]&#x21b5;
         1. Bernstein F C ,
         2. Koetzle T F ,
         3. Williams G J B ,
         4. Meyer E F, Jr ,
         5. Brice M D ,
         6. Rodgers J R ,
         7. Kennard O ,
         8. Shimanouchi T ,
         9. Tsaumi M
       (1977) J Mol Biol 112:535–542, pmid:875032.
       [254]Medline[255]Web of Science
   31. [256]&#x21b5;
         1. Lin M T ,
         2. Wei S J ,
         3. Wing L Y
       (1992) Mol Cell Endocrinol 84:47–54, pmid:1379200.
       [257]CrossRef[258]Medline
   32. [259]&#x21b5;
         1. Reynolds B A ,
         2. Tetzlaff W ,
         3. Weiss S
       (1992) J Neurosci 12:4565–4574, pmid:1432110.
       [260]Abstract
   33. [261]&#x21b5;
         1. Reynolds B A ,
         2. Weiss S
       (1992) Science 255:1707–1710, pmid:1553558.
       [262]Abstract/FREE Full Text
   34. [263]&#x21b5;
         1. Shaw P J ,
         2. Muirhead H
       (1977) J Mol Biol 109:475–485, pmid:833853.
       [264]CrossRef[265]Medline
   35. [266]&#x21b5;
         1. Achari A ,
         2. Marshall S E ,
         3. Muirhead H ,
         4. Palmieri R H ,
         5. Noltmann E A
       (1981) Philos Trans R Soc London B 293:145–157, pmid:6115414.
       [267]Medline
   36. [268]&#x21b5;
         1. Banner D W ,
         2. Bloomer A C ,
         3. Petsko G A ,
         4. Phillips D C ,
         5. Pogson C I ,
         6. Wilson I A ,
         7. Corran P H ,
         8. Furth A J ,
         9. Milman J D ,
        10. Offord R E ,
        11. et al.
       (1975) Nature (London) 255:609–614, pmid:1134550.
       [269]CrossRef[270]Medline
   37. [271]&#x21b5;
         1. Allen K N ,
         2. Lavie A ,
         3. Glasfeld A ,
         4. Tanada T N ,
         5. Gerrity D P ,
         6. Carlson S C ,
         7. Farber G K ,
         8. Petsko G A ,
         9. Ringe D
       (1994) Biochemistry 33:1488–1494, pmid:7906142.
       [272]CrossRef[273]Medline
   38. [274]&#x21b5;
         1. Lavie A ,
         2. Allen K N ,
         3. Petsko G A ,
         4. Ringe D
       (1994) Biochemistry 33:5469–5480, pmid:8180169.
       [275]CrossRef[276]Medline
   39. [277]&#x21b5;
         1. Allen K N ,
         2. Lavie A ,
         3. Petsko G A ,
         4. Ringe D
       (1995) Biochemistry 34:3742–3749, pmid:7893671.
       [278]Medline
   40. [279]&#x21b5;
         1. Farber G K ,
         2. Glasfeld A ,
         3. Tiraby G ,
         4. Ringe D ,
         5. Petsko G A
       (1989) Biochemistry 28:7289–7297, pmid:2510821.
       [280]CrossRef[281]Medline
   41.
         1. Lee C Y ,
         2. Bagdasarian M ,
         3. Meng M H ,
         4. Zeikus J G
       (1990) J Biol Chem 265:19082–19090, pmid:2229064.
       [282]Abstract/FREE Full Text
   42.
         1. Collyer C A ,
         2. Henrick K ,
         3. Blow D M
       (1990) J Mol Biol 212:211–235, pmid:2319597.
       [283]CrossRef[284]Medline[285]Web of Science
   43. [286]&#x21b5;
         1. Collyer C A ,
         2. Blow D M
       (1990) Proc Natl Acad Sci USA 87:1362–1366, pmid:2304904.
       [287]Abstract/FREE Full Text
   44. [288]&#x21b5;
         1. Albery W J ,
         2. Knowles J R
       (1976) Biochemistry 15:5627–5631, pmid:999838.
       [289]CrossRef[290]Medline
   45. [291]&#x21b5;
         1. Mo Y ,
         2. Young C D ,
         3. Gracy R W
       (1975) J Biol Chem 250:6747–6755, pmid:1158881.
       [292]Abstract/FREE Full Text
   46.
         1. Muramatsu N ,
         2. Noso Y
       (1971) Arch Biochem Biophys 144:245–252, pmid:5117529.
       [293]CrossRef[294]Medline
   47. [295]&#x21b5;
         1. Meng M ,
         2. Chen Y-T ,
         3. Hsiao Y-Y ,
         4. Itoh Y ,
         5. Bagdasarian M
       (1998) Eur J Biochem 257:500–505, pmid:9826199.
       [296]Medline
   48. [297]&#x21b5;
         1. Bairoch A ,
         2. Bucher P ,
         3. Hofmann K
       (1996) Nucleic Acids Res 24:189–196, pmid:8594577.
       [298]Abstract/FREE Full Text
   49. [299]&#x21b5;
         1. Dyson J E ,
         2. Noltmann E A
       (1968) J Biol Chem 243:1401–1414, pmid:5647261.
       [300]Abstract/FREE Full Text
   50. [301]&#x21b5;
         1. Schray K J ,
         2. Benkovic S J ,
         3. Benkovic P A ,
         4. Rose I A
       (1973) J Biol Chem 248:2219–2224, pmid:4570471.
       [302]Abstract/FREE Full Text
   51. [303]&#x21b5;
         1. Gibson D R ,
         2. Gracy R W ,
         3. Hartman F C
       (1980) J Biol Chem 255:9369–9374, pmid:7410429.
       [304]Abstract/FREE Full Text
   52. [305]&#x21b5;
         1. Schnackerz K D ,
         2. Noltmann E A
       (1971) Biochemistry 10:4837–4843, pmid:5134532.
       [306]Medline
   53. [307]&#x21b5;
         1. O’Connell E L ,
         2. Rose I A
       (1973) J Biol Chem 248:2225–2231, pmid:4570472.
       [308]Abstract/FREE Full Text
   54. [309]&#x21b5;
         1. Riordan J F ,
         2. McElvany K D ,
         3. Borders C L, Jr
       (1977) Science 195:884–886, pmid:190679.
       [310]Abstract/FREE Full Text
   55. [311]&#x21b5;
         1. Li L ,
         2. Lin K ,
         3. Kurland I J ,
         4. Correia J J ,
         5. Pilkis S J
       (1992) J Biol Chem 267:4386–4393, pmid:1311308.
       [312]Abstract/FREE Full Text
   56. [313]&#x21b5;
         1. Tsujikawa T ,
         2. Watanabe F ,
         3. Uyeda K
       (1995) Biochemistry 34:6389–6393, pmid:7756268.
       [314]Medline
   57. [315]&#x21b5;
         1. Lorek A ,
         2. Wilson K S ,
         3. Sansom M S ,
         4. Stuart D I ,
         5. Stura E A ,
         6. Jenkins J A ,
         7. Zanotti G ,
         8. Hajdu J ,
         9. Johnson L N
       (1984) Biochem J 218:45–60, pmid:6424657.
       [316]Medline[317]Web of Science
   58. [318]&#x21b5;
         1. Schinzel R ,
         2. Drueckes P
       (1991) FEBS Lett 286:125–128, pmid:1830850.
       [319]Medline
   59. [320]&#x21b5;
         1. Barford D ,
         2. Flint A J ,
         3. Tonks N K
       (1994) Science 263:1397–1404, pmid:8128219.
       [321]Abstract/FREE Full Text
   60. [322]&#x21b5;
         1. Zhang L ,
         2. Lee E Y
       (1997) Biochemistry 36:8209–8214, pmid:9204865.
       [323]CrossRef[324]Medline
   61. [325]&#x21b5;
         1. Baumann M ,
         2. Brand K
       (1988) Cancer Res 48:7018–7021, pmid:3191476.
       [326]Web of Science
   62. [327]&#x21b5;
         1. Gurney M E ,
         2. Heinrich S P ,
         3. Lee M R ,
         4. Yin H S
       (1986) Science 234:566–574, pmid:3764429.
       [328]Abstract/FREE Full Text
   63. [329]&#x21b5;
         1. Nicholls A ,
         2. Sharp K A ,
         3. Honig B
       (1991) Proteins 11:281–296, pmid:1758883.
       [330]CrossRef[331]Medline[332]Web of Science
   64. [333]&#x21b5;
         1. Kraulis P J
       (1991) J Appl Crystallogr 24:946–950.
       [334]CrossRef
   65. [335]&#x21b5;
         1. Merritt E A ,
         2. Murphy M E P
       (1994) Acta Crystallogr D 50:869–873, pmid:15299354.
       [336]CrossRef[337]Medline

     * [338]Add to CiteULike CiteULike
     * [339]Add to Complore Complore
     * [340]Add to Connotea Connotea
     * [341]Add to Del.icio.us Del.icio.us
     * [342]Add to Digg Digg
     * [343]Add to Facebook Facebook
     * [344]Add to Twitter Twitter

   [345]What's this?
   [346]« Previous | [347]Next Article »[348]Table of Contents

 §3§ This Article §3§

    1. PNAS May 11, 1999 vol. 96 no. 10 5412-5417

    1. [349]AbstractFree
    2. [350]Figures Only
    3. » Full Text
    4. [351]Full Text (PDF)

 §4§ Classifications §4§

    1.
          + Biological Sciences
               o [352]Biochemistry

 §4§ Services §4§

    1. [353]Email this article to a colleague
    2. [354]Alert me when this article is cited
    3. [355]Alert me if a correction is posted
    4. [356]Similar articles in this journal
    5. [357]Similar articles in ISI
    6. [358]Similar articles in PubMed
    7. [359]Add to My File Cabinet
    8. [360]Download to citation manager
    9. [361]Request copyright permission

 §4§ Citing Articles §4§

    1. [362]Load citing article information
    2. [363]Citing articles via CrossRef
    3. [364]Citing articles via Web of Science
    4. [365]Articles citing this article

 §4§ Google Scholar §4§

    1. [366]Articles by Sun, Y.
    2. [367]Articles by Hsiao, C.
    3. [368]Search for related content

 §4§ PubMed §4§

    1. [369]PubMed citation
    2. [370]Articles by Sun, Y.
    3. [371]Articles by Hsiao, C.
    4.

 §4§ Related Content §4§

    1. [372]Load related web page information

 §4§ Social Bookmarking §4§

    1.
          + [373]Add to CiteULike CiteULike
          + [374]Add to Complore Complore
          + [375]Add to Connotea Connotea
          + [376]Add to Del.icio.us Del.icio.us
          + [377]Add to Digg Digg
          + [378]Add to Facebook Facebook
          + [379]Add to Twitter Twitter
       [380]What's this?

 §3§ Navigate This Article §3§

    1. [381]Top
    2. [382]Abstract
    3. [383]MATERIALS AND METHODS
    4. [384]RESULTS AND DISCUSSION
    5. [385]CONCLUSIONS
    6. [386]Acknowledgments
    7. [387]Footnotes
    8. [388]References

   Search PNAS ____________________ GO
   [389]Link: Advanced Search

 §3§ This Week's Issue §3§

    1. [390]September 14, 2010, 107 (37)

    1. [391]Current Issue

 §4§ From the Cover §4§

     * [392]Eyeing neural circuits in Drosophila
     * [393]Optimizing live cell imaging
     * [394]Public perceptions of energy use
     * [395]Activating DNA mismatch repair
     * [396]Evolution of collective migration

    1. [397]Alert me to new issues of PNAS

     * [398]Early Edition
     * [399]Archives
     * [400]Online Submission

     * [401]Feature Articles
       (Expanded research articles of exceptional breadth)
     * [402]Commentaries
       (Expert commentary on leading research)
     * [403]Letters
       (Online-only letters to the editor)
     * [404]Inaugural Articles
       (Articles by recently elected NAS members)
     * [405]PNAS Profiles
       (Biographical profiles of Academy members)
     * [406]Sustainability Science
       (Interactions of human and environmental systems)
     * [407]Collected Papers
       (Editorials, Perspectives, Reviews, Colloquia, etc.)
     * [408]Special Features
       (Solicited articles on exceptional research topics)
     * [409]Sackler Colloquia
       (Scientific reports held under NAS auspices)
     * [410]Podcasts
       Brief podcasts with leading scientists

 §3§ Most §3§

     *  §4§ Read §4§
         1. [411]Molecular origins of fluorocarbon hydrophobicity
         2. [412]Public perceptions of energy consumption and savings
         3. [413]Detection of MLV-related virus gene sequences in blood of
            patients with chronic fatigue syndrome and healthy blood
            donors
         4. [414]Inaugural Article: The Lucretian swerve: The biological
            basis of human behavior and the criminal justice system
         5. [415]The most influential journals: Impact Factor and
            Eigenfactor
       [416]» View all Most Read articles
     *  §4§ Cited §4§
         1. [417]DNA Sequencing with Chain-Terminating Inhibitors
         2. [418]Electrophoretic Transfer of Proteins from Polyacrylamide
            Gels to Nitrocellulose Sheets: Procedure and Some Applications
         3. [419]Cluster analysis and display of genome-wide expression
            patterns
         4. [420]Significance analysis of microarrays applied to the
            ionizing radiation response
         5. [421]One-step inactivation of chromosomal genes in Escherichia
            coli K-12 using PCR products
       [422]» View all Most Cited articles

     * [423]Current Issue
     * [424]Archives
     * [425]Online Submission
     * [426]Info for Authors
     * [427]Editorial Board
     * [428]About

     * [429]Subscribe
     * [430]Advertise
     * [431]Contact
     * [432]Site Map

   [433]Copyright ©2010 by the National Academy of Sciences

References

   Visible links
   1. http://www.pnas.org/
   2. http://www.pnas.org/
   3. file://localhost/dev/paper.html#content-block
   4. http://www.pnas.org/misc/iforc.shtml
   5. http://www.pnas.org/misc/masthead.shtml
   6. http://www.pnas.org/misc/about.shtml
   7. http://www.pnas.org/subscriptions
   8. http://www.pnas.org/misc/about.shtml#advertising
   9. http://www.pnas.org/site/misc/contact.shtml
  10. http://www.pnas.org/cgi/feedback
  11. http://www.pnas.org/misc/sitemap.shtml
  12. http://www.pnas.org/cgi/adclick/?ad=25172&adclick=true&url=http%3A%2F%2Fwww.polyplus-transfection.com%2Ftransfection-reagents%2Fsirna-transfection-interferin%2F
  13. http://www.pnas.org/cgi/adclick/?ad=21636&adclick=true&url=http%3A%2F%2Fwww.pnas.org%2Fcgi%2Falerts%2Fetoc
  14. http://www.pnas.org/cgi/adclick/?ad=19262&adclick=true&url=http%3A%2F%2Fwww.pnas.org%2Fmisc%2Fpodcasts.shtml
  15. http://www.pnas.org/login?uri=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F96%2F10%2F5412.long
  16. http://www.pnas.org/search?author1=Yuh-Ju+Sun&sortspec=date&submit=Submit
  17. file://localhost/dev/paper.html#aff-1
  18. http://www.pnas.org/search?author1=Chia-Cheng+Chou&sortspec=date&submit=Submit
  19. file://localhost/dev/paper.html#aff-1
  20. file://localhost/dev/paper.html#aff-1
  21. http://www.pnas.org/search?author1=Wei-Shone+Chen&sortspec=date&submit=Submit
  22. file://localhost/dev/paper.html#aff-1
  23. http://www.pnas.org/search?author1=Rong-Tsun+Wu&sortspec=date&submit=Submit
  24. file://localhost/dev/paper.html#aff-1
  25. http://www.pnas.org/search?author1=Menghsiao+Meng&sortspec=date&submit=Submit
  26. file://localhost/dev/paper.html#aff-1
  27. http://www.pnas.org/search?author1=Chwan-Deng+Hsiao&sortspec=date&submit=Submit
  28. file://localhost/dev/paper.html#aff-1
  29. file://localhost/dev/paper.html#fn-1
  30. file://localhost/dev/paper.html#sec-1
  31. pending:yes
  32. file://localhost/dev/paper.html#ref-1
  33. file://localhost/dev/paper.html#ref-2
  34. file://localhost/dev/paper.html#ref-3
  35. file://localhost/dev/paper.html#ref-4
  36. file://localhost/dev/paper.html#ref-5
  37. file://localhost/dev/paper.html#ref-6
  38. file://localhost/dev/paper.html#ref-7
  39. file://localhost/dev/paper.html#ref-9
  40. file://localhost/dev/paper.html#ref-10
  41. file://localhost/dev/paper.html#ref-11
  42. file://localhost/dev/paper.html#ref-11
  43. file://localhost/dev/paper.html#ref-12
  44. file://localhost/dev/paper.html#ref-8
  45. file://localhost/dev/paper.html#ref-7
  46. file://localhost/dev/paper.html#ref-13
  47. file://localhost/dev/paper.html#ref-14
  48. file://localhost/dev/paper.html#ref-9
  49. file://localhost/dev/paper.html#ref-9
  50. file://localhost/dev/paper.html#ref-10
  51. file://localhost/dev/paper.html#ref-15
  52. file://localhost/dev/paper.html#ref-17
  53. file://localhost/dev/paper.html#ref-18
  54. file://localhost/dev/paper.html#ref-10
  55. file://localhost/dev/paper.html#ref-15
  56. file://localhost/dev/paper.html#ref-19
  57. file://localhost/dev/paper.html#ref-21
  58. file://localhost/dev/paper.html#ref-17
  59. file://localhost/dev/paper.html#ref-10
  60. file://localhost/dev/paper.html#ref-22
  61. file://localhost/dev/paper.html#ref-10
  62. file://localhost/dev/paper.html#ref-12
  63. file://localhost/dev/paper.html#ref-12
  64. file://localhost/dev/paper.html#ref-12
  65. file://localhost/dev/paper.html#ref-23
  66. file://localhost/dev/paper.html#abstract-1
  67. file://localhost/dev/paper.html#sec-5
  68. file://localhost/dev/paper.html#ref-23
  69. file://localhost/dev/paper.html#ref-24
  70. file://localhost/dev/paper.html#T1
  71. http://www.pnas.org/content/96/10/5412/T1.expansion.html
  72. http://www.pnas.org/content/96/10/5412/T1.expansion.html
  73. file://localhost/dev/paper.html#ref-24
  74. file://localhost/dev/paper.html#ref-25
  75. file://localhost/dev/paper.html#ref-26
  76. file://localhost/dev/paper.html#ref-27
  77. file://localhost/dev/paper.html#F1
  78. file://localhost/dev/paper.html#ref-28
  79. file://localhost/dev/paper.html#ref-29
  80. file://localhost/dev/paper.html#ref-30
  81. http://www.pnas.org/external-ref?link_type=PDB&access_num=2PGI
  82. http://www.pnas.org/content/96/10/5412/F1.expansion.html
  83. http://www.pnas.org/content/96/10/5412/F1.expansion.html
  84. http://www.pnas.org/content/96/10/5412/F1.expansion.html
  85. http://www.pnas.org/powerpoint/96/10/5412/F1
  86. file://localhost/dev/paper.html#ref-31
  87. file://localhost/dev/paper.html#ref-32
  88. file://localhost/dev/paper.html#ref-33
  89. file://localhost/dev/paper.html#sec-1
  90. file://localhost/dev/paper.html#sec-11
  91. file://localhost/dev/paper.html#F2
  92. http://www.pnas.org/content/96/10/5412/F2.expansion.html
  93. http://www.pnas.org/content/96/10/5412/F2.expansion.html
  94. http://www.pnas.org/content/96/10/5412/F2.expansion.html
  95. http://www.pnas.org/powerpoint/96/10/5412/F2
  96. file://localhost/dev/paper.html#ref-64
  97. file://localhost/dev/paper.html#ref-65
  98. file://localhost/dev/paper.html#F2
  99. file://localhost/dev/paper.html#ref-34
 100. file://localhost/dev/paper.html#ref-35
 101. file://localhost/dev/paper.html#ref-36
 102. file://localhost/dev/paper.html#ref-37
 103. file://localhost/dev/paper.html#ref-39
 104. file://localhost/dev/paper.html#ref-36
 105. file://localhost/dev/paper.html#ref-40
 106. file://localhost/dev/paper.html#ref-43
 107. file://localhost/dev/paper.html#ref-38
 108. file://localhost/dev/paper.html#ref-44
 109. file://localhost/dev/paper.html#ref-10
 110. file://localhost/dev/paper.html#ref-17
 111. file://localhost/dev/paper.html#F3
 112. file://localhost/dev/paper.html#F3
 113. file://localhost/dev/paper.html#F3
 114. file://localhost/dev/paper.html#ref-10
 115. http://www.pnas.org/content/96/10/5412/F3.expansion.html
 116. http://www.pnas.org/content/96/10/5412/F3.expansion.html
 117. http://www.pnas.org/content/96/10/5412/F3.expansion.html
 118. http://www.pnas.org/powerpoint/96/10/5412/F3
 119. file://localhost/dev/paper.html#ref-10
 120. file://localhost/dev/paper.html#ref-35
 121. file://localhost/dev/paper.html#ref-45
 122. file://localhost/dev/paper.html#ref-47
 123. file://localhost/dev/paper.html#F4
 124. file://localhost/dev/paper.html#ref-48
 125. http://www.pnas.org/content/96/10/5412/F4.expansion.html
 126. http://www.pnas.org/content/96/10/5412/F4.expansion.html
 127. http://www.pnas.org/content/96/10/5412/F4.expansion.html
 128. http://www.pnas.org/powerpoint/96/10/5412/F4
 129. file://localhost/dev/paper.html#ref-49
 130. file://localhost/dev/paper.html#ref-50
 131. file://localhost/dev/paper.html#ref-51
 132. file://localhost/dev/paper.html#ref-52
 133. file://localhost/dev/paper.html#ref-53
 134. file://localhost/dev/paper.html#ref-54
 135. file://localhost/dev/paper.html#ref-47
 136. file://localhost/dev/paper.html#ref-34
 137. file://localhost/dev/paper.html#ref-35
 138. file://localhost/dev/paper.html#ref-2
 139. file://localhost/dev/paper.html#ref-2
 140. file://localhost/dev/paper.html#ref-55
 141. file://localhost/dev/paper.html#ref-56
 142. file://localhost/dev/paper.html#ref-57
 143. file://localhost/dev/paper.html#ref-58
 144. file://localhost/dev/paper.html#ref-59
 145. file://localhost/dev/paper.html#ref-60
 146. file://localhost/dev/paper.html#F5
 147. http://www.pnas.org/content/96/10/5412/F5.expansion.html
 148. http://www.pnas.org/content/96/10/5412/F5.expansion.html
 149. http://www.pnas.org/content/96/10/5412/F5.expansion.html
 150. http://www.pnas.org/powerpoint/96/10/5412/F5
 151. file://localhost/dev/paper.html#ref-64
 152. file://localhost/dev/paper.html#ref-65
 153. file://localhost/dev/paper.html#F4
 154. file://localhost/dev/paper.html#ref-7
 155. file://localhost/dev/paper.html#ref-8
 156. file://localhost/dev/paper.html#ref-10
 157. file://localhost/dev/paper.html#ref-61
 158. file://localhost/dev/paper.html#ref-8
 159. file://localhost/dev/paper.html#ref-32
 160. file://localhost/dev/paper.html#ref-33
 161. file://localhost/dev/paper.html#F6
 162. file://localhost/dev/paper.html#F6
 163. file://localhost/dev/paper.html#ref-62
 164. file://localhost/dev/paper.html#ref-9
 165. http://www.pnas.org/content/96/10/5412/F6.expansion.html
 166. http://www.pnas.org/content/96/10/5412/F6.expansion.html
 167. http://www.pnas.org/content/96/10/5412/F6.expansion.html
 168. http://www.pnas.org/powerpoint/96/10/5412/F6
 169. file://localhost/dev/paper.html#F7
 170. file://localhost/dev/paper.html#ref-63
 171. file://localhost/dev/paper.html#ref-9
 172. http://www.pnas.org/content/96/10/5412/F7.expansion.html
 173. http://www.pnas.org/content/96/10/5412/F7.expansion.html
 174. http://www.pnas.org/content/96/10/5412/F7.expansion.html
 175. http://www.pnas.org/powerpoint/96/10/5412/F7
 176. file://localhost/dev/paper.html#ref-63
 177. file://localhost/dev/paper.html#F2
 178. file://localhost/dev/paper.html#sec-5
 179. file://localhost/dev/paper.html#ack-1
 180. file://localhost/dev/paper.html#sec-11
 181. file://localhost/dev/paper.html#fn-group-1
 182. file://localhost/dev/paper.html#ack-1
 183. file://localhost/dev/paper.html#ref-list-1
 184. file://localhost/dev/paper.html#xref-fn-1-1
 185. http://www.pnas.org/external-ref?link_type=PDB&access_num=2PGI
 186. file://localhost/dev/paper.html#fn-group-1
 187. file://localhost/dev/paper.html#xref-ref-1-1
 188. http://www.pnas.org/external-ref?access_num=10.1159/000084151&link_type=DOI
 189. http://www.pnas.org/external-ref?access_num=5169656&link_type=MED
 190. file://localhost/dev/paper.html#xref-ref-2-1
 191. http://www.pnas.org/external-ref?access_num=10.1007/s004390050849&link_type=DOI
 192. http://www.pnas.org/external-ref?access_num=9856489&link_type=MED
 193. http://www.pnas.org/external-ref?access_num=000077297400014&link_type=ISI
 194. file://localhost/dev/paper.html#xref-ref-3-1
 195. http://www.pnas.org/external-ref?access_num=2207761&link_type=MED
 196. http://www.pnas.org/external-ref?access_num=A1990ED25100006&link_type=ISI
 197. file://localhost/dev/paper.html#xref-ref-4-1
 198. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=271/7/3846
 199. file://localhost/dev/paper.html#xref-ref-5-1
 200. http://www.pnas.org/external-ref?access_num=7321637&link_type=MED
 201. file://localhost/dev/paper.html#xref-ref-6-1
 202. http://www.pnas.org/external-ref?access_num=7071398&link_type=MED
 203. file://localhost/dev/paper.html#xref-ref-7-1
 204. http://www.pnas.org/external-ref?access_num=10.1038/332454a0&link_type=DOI
 205. http://www.pnas.org/external-ref?access_num=3352744&link_type=MED
 206. file://localhost/dev/paper.html#xref-ref-8-1
 207. http://www.pnas.org/external-ref?access_num=10.1038/332455a0&link_type=DOI
 208. http://www.pnas.org/external-ref?access_num=3352745&link_type=MED
 209. file://localhost/dev/paper.html#xref-ref-9-1
 210. http://www.pnas.org/external-ref?access_num=10.1002/jnr.490230212&link_type=DOI
 211. http://www.pnas.org/external-ref?access_num=2547084&link_type=MED
 212. http://www.pnas.org/external-ref?access_num=A1989AC60300011&link_type=ISI
 213. file://localhost/dev/paper.html#xref-ref-10-1
 214. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=canres&resid=56/13/2960
 215. file://localhost/dev/paper.html#xref-ref-11-1
 216. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=canres&resid=58/12/2667
 217. file://localhost/dev/paper.html#xref-ref-12-1
 218. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=bloodjournal&resid=87/11/4502
 219. file://localhost/dev/paper.html#xref-ref-13-1
 220. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=234/4776/574
 221. file://localhost/dev/paper.html#xref-ref-14-1
 222. http://www.pnas.org/external-ref?access_num=10.1111/j.1600-065X.1987.tb00533.x&link_type=DOI
 223. http://www.pnas.org/external-ref?access_num=3326821&link_type=MED
 224. file://localhost/dev/paper.html#xref-ref-15-1
 225. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=83/10/3302
 226. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=canres&resid=50/2/409
 227. file://localhost/dev/paper.html#xref-ref-17-1
 228. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=266/20/13442
 229. file://localhost/dev/paper.html#xref-ref-18-1
 230. http://www.pnas.org/external-ref?access_num=10.1016/0163-7258(91)90030-P&link_type=DOI
 231. http://www.pnas.org/external-ref?access_num=1726476&link_type=MED
 232. file://localhost/dev/paper.html#xref-ref-19-1
 233. http://www.pnas.org/external-ref?access_num=10.1007/BF00047599&link_type=DOI
 234. http://www.pnas.org/external-ref?access_num=1324804&link_type=MED
 235. file://localhost/dev/paper.html#xref-ref-21-1
 236. http://www.pnas.org/external-ref?access_num=7558435&link_type=MED
 237. file://localhost/dev/paper.html#xref-ref-22-1
 238. http://www.pnas.org/external-ref?access_num=1128273&link_type=MED
 239. file://localhost/dev/paper.html#xref-ref-23-1
 240. http://www.pnas.org/external-ref?access_num=10.1006/jsbi.1997.3913&link_type=DOI
 241. http://www.pnas.org/external-ref?access_num=9417984&link_type=MED
 242. file://localhost/dev/paper.html#xref-ref-24-1
 243. file://localhost/dev/paper.html#xref-ref-25-1
 244. http://www.pnas.org/external-ref?access_num=4079800&link_type=MED
 245. http://www.pnas.org/external-ref?access_num=A1985AVT3900008&link_type=ISI
 246. file://localhost/dev/paper.html#xref-ref-26-1
 247. http://www.pnas.org/external-ref?access_num=10.1107/S090744499500761X&link_type=DOI
 248. http://www.pnas.org/external-ref?access_num=15299724&link_type=MED
 249. file://localhost/dev/paper.html#xref-ref-27-1
 250. file://localhost/dev/paper.html#xref-ref-28-1
 251. http://www.pnas.org/external-ref?access_num=10.1038/355472a0&link_type=DOI
 252. file://localhost/dev/paper.html#xref-ref-29-1
 253. file://localhost/dev/paper.html#xref-ref-30-1
 254. http://www.pnas.org/external-ref?access_num=875032&link_type=MED
 255. http://www.pnas.org/external-ref?access_num=A1977DK67100014&link_type=ISI
 256. file://localhost/dev/paper.html#xref-ref-31-1
 257. http://www.pnas.org/external-ref?access_num=10.1016/0303-7207(92)90070-M&link_type=DOI
 258. http://www.pnas.org/external-ref?access_num=1379200&link_type=MED
 259. file://localhost/dev/paper.html#xref-ref-32-1
 260. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=jneuro&resid=12/11/4565
 261. file://localhost/dev/paper.html#xref-ref-33-1
 262. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=255/5052/1707
 263. file://localhost/dev/paper.html#xref-ref-34-1
 264. http://www.pnas.org/external-ref?access_num=10.1016/S0022-2836(77)80025-9&link_type=DOI
 265. http://www.pnas.org/external-ref?access_num=833853&link_type=MED
 266. file://localhost/dev/paper.html#xref-ref-35-1
 267. http://www.pnas.org/external-ref?access_num=6115414&link_type=MED
 268. file://localhost/dev/paper.html#xref-ref-36-1
 269. http://www.pnas.org/external-ref?access_num=10.1038/255609a0&link_type=DOI
 270. http://www.pnas.org/external-ref?access_num=1134550&link_type=MED
 271. file://localhost/dev/paper.html#xref-ref-37-1
 272. http://www.pnas.org/external-ref?access_num=10.1021/bi00172a027&link_type=DOI
 273. http://www.pnas.org/external-ref?access_num=7906142&link_type=MED
 274. file://localhost/dev/paper.html#xref-ref-38-1
 275. http://www.pnas.org/external-ref?access_num=10.1021/bi00184a016&link_type=DOI
 276. http://www.pnas.org/external-ref?access_num=8180169&link_type=MED
 277. file://localhost/dev/paper.html#xref-ref-39-1
 278. http://www.pnas.org/external-ref?access_num=7893671&link_type=MED
 279. file://localhost/dev/paper.html#xref-ref-40-1
 280. http://www.pnas.org/external-ref?access_num=10.1021/bi00444a022&link_type=DOI
 281. http://www.pnas.org/external-ref?access_num=2510821&link_type=MED
 282. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=265/31/19082
 283. http://www.pnas.org/external-ref?access_num=10.1016/0022-2836(90)90316-E&link_type=DOI
 284. http://www.pnas.org/external-ref?access_num=2319597&link_type=MED
 285. http://www.pnas.org/external-ref?access_num=A1990CV28600021&link_type=ISI
 286. file://localhost/dev/paper.html#xref-ref-43-1
 287. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=87/4/1362
 288. file://localhost/dev/paper.html#xref-ref-44-1
 289. http://www.pnas.org/external-ref?access_num=10.1021/bi00670a031&link_type=DOI
 290. http://www.pnas.org/external-ref?access_num=999838&link_type=MED
 291. file://localhost/dev/paper.html#xref-ref-45-1
 292. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=250/17/6747
 293. http://www.pnas.org/external-ref?access_num=10.1016/0003-9861(71)90475-9&link_type=DOI
 294. http://www.pnas.org/external-ref?access_num=5117529&link_type=MED
 295. file://localhost/dev/paper.html#xref-ref-47-1
 296. http://www.pnas.org/external-ref?access_num=9826199&link_type=MED
 297. file://localhost/dev/paper.html#xref-ref-48-1
 298. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=nar&resid=24/1/189
 299. file://localhost/dev/paper.html#xref-ref-49-1
 300. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=243/7/1401
 301. file://localhost/dev/paper.html#xref-ref-50-1
 302. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=248/6/2219
 303. file://localhost/dev/paper.html#xref-ref-51-1
 304. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=255/19/9369
 305. file://localhost/dev/paper.html#xref-ref-52-1
 306. http://www.pnas.org/external-ref?access_num=5134532&link_type=MED
 307. file://localhost/dev/paper.html#xref-ref-53-1
 308. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=248/6/2225
 309. file://localhost/dev/paper.html#xref-ref-54-1
 310. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=195/4281/884
 311. file://localhost/dev/paper.html#xref-ref-55-1
 312. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=jbc&resid=267/7/4386
 313. file://localhost/dev/paper.html#xref-ref-56-1
 314. http://www.pnas.org/external-ref?access_num=7756268&link_type=MED
 315. file://localhost/dev/paper.html#xref-ref-57-1
 316. http://www.pnas.org/external-ref?access_num=6424657&link_type=MED
 317. http://www.pnas.org/external-ref?access_num=A1984SD69700006&link_type=ISI
 318. file://localhost/dev/paper.html#xref-ref-58-1
 319. http://www.pnas.org/external-ref?access_num=1830850&link_type=MED
 320. file://localhost/dev/paper.html#xref-ref-59-1
 321. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=263/5152/1397
 322. file://localhost/dev/paper.html#xref-ref-60-1
 323. http://www.pnas.org/external-ref?access_num=10.1021/bi9704865&link_type=DOI
 324. http://www.pnas.org/external-ref?access_num=9204865&link_type=MED
 325. file://localhost/dev/paper.html#xref-ref-61-1
 326. http://www.pnas.org/external-ref?access_num=A1988R284600008&link_type=ISI
 327. file://localhost/dev/paper.html#xref-ref-62-1
 328. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=234/4776/566
 329. file://localhost/dev/paper.html#xref-ref-63-1
 330. http://www.pnas.org/external-ref?access_num=10.1002/prot.340110407&link_type=DOI
 331. http://www.pnas.org/external-ref?access_num=1758883&link_type=MED
 332. http://www.pnas.org/external-ref?access_num=A1991GV03200006&link_type=ISI
 333. file://localhost/dev/paper.html#xref-ref-64-1
 334. http://www.pnas.org/external-ref?access_num=10.1107/S0021889891004399&link_type=DOI
 335. file://localhost/dev/paper.html#xref-ref-65-1
 336. http://www.pnas.org/external-ref?access_num=10.1107/S0907444994006396&link_type=DOI
 337. http://www.pnas.org/external-ref?access_num=15299354&link_type=MED
 338. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=CITEULIKE
 339. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=COMPLORE
 340. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=CONNOTEA
 341. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=DEL_ICIO_US
 342. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=DIGG
 343. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/short/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=FACEBOOK
 344. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=TWITTER
 345. http://www.pnas.org/help/social_bookmarks.dtl
 346. http://www.pnas.org/content/96/10/5406.short
 347. http://www.pnas.org/content/96/10/5418.short
 348. http://www.pnas.org/content/96/10.toc
 349. http://www.pnas.org/content/96/10/5412.abstract
 350. http://www.pnas.org/content/96/10/5412.figures-only
 351. http://www.pnas.org/content/96/10/5412.full.pdf+html
 352. http://www.pnas.org/search?tocsectionid=Biochemistry&sortspec=date&submit=Submit
 353. http://www.pnas.org/email?gca=pnas;96/10/5412&current-view-path=/content/96/10/5412.long
 354. http://www.pnas.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&cited_by_criteria_resid=pnas;96/10/5412&saveAlert=no&return-type=article&return_url=http://www.pnas.org/content/96/10/5412.long
 355. http://www.pnas.org/cgi/alerts/ctalert?alertType=correction&addAlert=correction&correction_criteria_value=96/10/5412&saveAlert=no&return-type=article&return_url=http://www.pnas.org/content/96/10/5412.long
 356. http://www.pnas.org/search?qbe=pnas;96/10/5412&citation=Sun%20et%20al.%2096%20%2810%29:%205412&submit=yes
 357. http://www.pnas.org/external-ref?access_num=pnas%3B96%2F10%2F5412&link_type=ISI_RELATEDRECORDS
 358. http://www.pnas.org/external-ref?access_num=10318897&link_type=MED_NBRS
 359. http://www.pnas.org/cgi/folders?action=addtofolder&wherefrom=JOURNALS&wrapped_id=pnas;96/10/5412
 360. http://www.pnas.org/citmgr?gca=pnas;96/10/5412
 361. http://www.pnas.org/misc/rightperm.shtml
 362. http://www.pnas.org/content/96/10/5412.long?cited-by=yes&legid=pnas;96/10/5412#cited-by
 363. http://www.pnas.org/cgi/crossref-forward-links/96/10/5412
 364. http://www.pnas.org/external-ref?access_num=pnas%3B96%2F10%2F5412&link_type=ISI_CITING
 365. http://www.pnas.org/external-ref?access_num=http://www.pnas.org/cgi/content/abstract/96/10/5412&link_type=GOOGLESCHOLAR
 366. http://scholar.google.com/scholar?q=%22author%3ASun%20author%3AY.%22
 367. http://scholar.google.com/scholar?q=%22author%3AHsiao%20author%3AC.%22
 368. http://www.pnas.org/external-ref?access_num=http://www.pnas.org/cgi/content/abstract/96/10/5412&link_type=GOOGLESCHOLARRELATED
 369. http://www.pnas.org/external-ref?access_num=10318897&link_type=PUBMED
 370. http://www.pnas.org/external-ref?access_num=Sun%20Y&link_type=AUTHORSEARCH
 371. http://www.pnas.org/external-ref?access_num=Hsiao%20C&link_type=AUTHORSEARCH
 372. http://www.pnas.org/content/96/10/5412.long?related-urls=yes&legid=pnas;96/10/5412#related-urls
 373. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=CITEULIKE
 374. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=COMPLORE
 375. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=CONNOTEA
 376. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=DEL_ICIO_US
 377. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=DIGG
 378. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/short/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=FACEBOOK
 379. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/96/10/5412&title=The%20crystal%20structure%20of%20a%20multifunctional%20protein%3A%20Phosphoglucose%20isomerase%2Fautocrine%20motility%20factor%2Fneuroleukin+--+Sun%20et%20al.%2096%20%2810%29%3A%205412+--+PNAS&doi=&link_type=TWITTER
 380. http://www.pnas.org/help/social_bookmarks.dtl
 381. file://localhost/dev/paper.html#content-block
 382. file://localhost/dev/paper.html#abstract-1
 383. file://localhost/dev/paper.html#sec-1
 384. file://localhost/dev/paper.html#sec-5
 385. file://localhost/dev/paper.html#sec-11
 386. file://localhost/dev/paper.html#ack-1
 387. file://localhost/dev/paper.html#fn-group-1
 388. file://localhost/dev/paper.html#ref-list-1
 389. http://www.pnas.org/search
 390. http://www.pnas.org/content/current
 391. http://www.pnas.org/content/current
 392. http://www.pnas.org/content/107/37/16378
 393. http://www.pnas.org/content/107/37/16016
 394. http://www.pnas.org/content/107/37/16054
 395. http://www.pnas.org/content/107/37/16066
 396. http://www.pnas.org/content/107/37/16172
 397. http://www.pnas.org/cgi/alerts/etoc
 398. http://www.pnas.org/content/early/recent
 399. http://www.pnas.org/content
 400. http://www.pnas.org/site/misc/onlinesubmission.shtml
 401. http://www.pnas.org/cgi/collection/feature_articles
 402. http://www.pnas.org/content/by/section/Commentaries
 403. http://www.pnas.org/cgi/collection/letters
 404. http://www.pnas.org/cgi/collection/inaugurals
 405. http://www.pnas.org/cgi/collection/profiles
 406. http://www.pnas.org/site/misc/sustainability.shtml
 407. http://www.pnas.org/site/misc/collectedpapers.shtml
 408. http://www.pnas.org/site/misc/special.shtml
 409. http://www.pnas.org/site/misc/colloquia.shtml
 410. http://www.pnas.org/site/misc/podcasts.shtml
 411. http://www.pnas.org/cgi/content/short/107/31/13603?rss=1&ssource=mfc
 412. http://www.pnas.org/cgi/content/short/1001509107v1?rss=1&ssource=mfc
 413. http://www.pnas.org/cgi/content/short/1006901107v1?rss=1&ssource=mfc
 414. http://www.pnas.org/cgi/content/short/107/10/4499?rss=1&ssource=mfc
 415. http://www.pnas.org/cgi/content/short/106/17/6883?rss=1&ssource=mfc
 416. http://www.pnas.org/reports/mfr1.dtl
 417. http://www.pnas.org/cgi/content/short/74/12/5463?rss=1&ssource=mfc
 418. http://www.pnas.org/cgi/content/short/76/9/4350?rss=1&ssource=mfc
 419. http://www.pnas.org/cgi/content/short/95/25/14863?rss=1&ssource=mfc
 420. http://www.pnas.org/cgi/content/short/98/9/5116?rss=1&ssource=mfc
 421. http://www.pnas.org/cgi/content/short/97/12/6640?rss=1&ssource=mfc
 422. http://www.pnas.org/reports/mfc1.dtl
 423. http://www.pnas.org/content/current
 424. http://www.pnas.org/content
 425. http://www.pnas.org/misc/onlinesubmission.shtml
 426. http://www.pnas.org/misc/iforc.shtml
 427. http://www.pnas.org/misc/masthead.shtml
 428. http://www.pnas.org/misc/about.shtml
 429. http://www.pnas.org/subscriptions
 430. http://www.pnas.org/misc/about.shtml#advertising
 431. http://www.pnas.org/cgi/feedback
 432. http://www.pnas.org/misc/sitemap.shtml
 433. http://www.pnas.org/misc/terms.shtml

   Hidden links:
 434. http://www.pnas.org/entrez-links/10318897