The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.
    #[1]home [2]copyright [3]help [4]Nature current issue RSS feed
   [5]nature.com [6]nature.com

     * [7]Jump to main content
     * [8]Jump to navigation
     * [9]nature.com homepage
     * [10]Publications A-Z index
     * [11]Browse by subject

     * [12]My account
     * [13]Submit manuscript
     * [14]Register
     * [15]Subscribe

   [16]Advertisement

   Full text access provided to University of Colorado System
   by c/o Denison Library
   [17]Nature homepage
   Search [this journal_____] ____________________ go [18]Advanced search

   [19]Journal home > [20]Archive > [21]Letters to Nature > Full Text

 §1§ Letters to Nature §1§

   Nature 403, 567-571 (3 February 2000) | doi:10.1038/35000617; Received
   19 October 1999; Accepted 7 December 1999

 §2§ Structure of human guanylate-binding protein 1 representing a unique
class of GTP-binding proteins §2§

   Balaji Prakash^[22]1, Gerrit J. K. Praefcke^[23]1, Louis Renault,
   Alfred Wittinghofer & Christian Herrmann
    1. Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse
       11, 44227 Dortmund, Germany
    2. These authors contributed equally to this work

   Correspondence to: Alfred WittinghoferChristian Herrmann Correspondence
   and requests for materials should be addressed to A.W. (e-mail:
   Email: [24]alfred.wittinghofer@mpi-dortmund.mpg.de) or to C.H. (e-mail:
   Email: [25]christian.herrmann@mpi-dortmund.mpg.de). Coordinates have
   been deposited with the Protein Data Bank (accession no. 1DG3).

   [26]Top of page

 §3§ Abstract §3§

   Interferon- gamma is an immunomodulatory substance that induces the
   expression of many genes to orchestrate a cellular response and
   establish the antiviral state of the cell. Among the most abundant
   antiviral proteins induced by interferon- gamma are guanylate-binding
   proteins such as GBP1 and GBP2 (refs [27]1, [28]2). These are large
   GTP-binding proteins of relative molecular mass 67,000 with a
   high-turnover GTPase activity^[29]3 and an antiviral effect^[30]4. Here
   we have determined the crystal structure of full-length human GBP1 to
   1.8 Å resolution. The amino-terminal 278 residues constitute a modified
   G domain with a number of insertions compared to the canonical Ras
   structure, and the carboxy-terminal part is an extended helical domain
   with unique features. From the structure and biochemical experiments
   reported here, GBP1 appears to belong to the group of large GTP-binding
   proteins that includes Mx and dynamin, the common property of which is
   the ability to undergo oligomerization with a high
   concentration-dependent GTPase activity^[31]5.

   Guanylate-binding proteins (GBP1 and 2) were originally identified as
   proteins from an extract of human fibroblasts treated with interferons,
   gamma -interferon being the most effective, that bind to agarose-bound
   GMP, GDP and GTP^[32]1, ^[33]2. Smaller guanylate-binding proteins of
   relative molecular mass 47,000 (M[r] = 47K)^[34]6 are also induced by
   gamma -interferon, whereas alpha - and beta -interferon induce
   antiviral GTP-binding Mx proteins^[35]7. Human (h)GBP1 is expressed to
   mediate an antiviral effect against vesicular stomatitis virus and
   encephalomyocarditis virus^[36]4. The biochemical properties of GBPs
   are clearly different from those of Ras-like and heterotrimeric
   GTP-binding proteins. They bind guanine nucleotides with low affinity
   (micromolar range), are stable in their absence and have a high
   turnover GTPase^[37]3, ^[38]8. In addition to binding GDP/GTP, they
   have the unique ability to bind GMP with equal affinity and hydrolyse
   GTP not only to GDP but also to GMP^[39]3. As a first step towards
   understanding the biochemistry and biology of GBPs, we have determined
   the three-dimensional structure of hGBP1. Furthermore, we show
   nucleotide-dependent oligomerization of hGBP1 and concentration
   dependence of its GTPase reaction rate.

   We determined the structure of full-length, histidine(His[6])-tagged
   hGBP1 in the absence of nucleotide to 1.8 Å. The final model comprises
   residues 6–583 and 341 water molecules ([40]Fig. 1a, [41]b), with some
   poorly defined, probably mobile loops (dashed lines). The
   crystallographic data are summarized in [42]Table 1. The structure can
   be divided into a compact, globular alpha , beta -domain (6–278), which
   we term the LG (Large G) domain, and an elongated, purely alpha
   -helical domain. The domains are connected by a short intermediate
   region consisting of one alpha -helix and a short two-stranded beta
   -sheet. The connecting region is not an independent domain; it is
   packed, via helix alpha 6, against the beta 1/ alpha 1 region of the LG
   domain, away from the presumed nucleotide-binding site (see below). It
   could be involved in stabilizing the relative location of the two
   domains against each other. The helical domain is composed of seven
   helices, which extend 90 Å away from the LG domain.

 §5§ [43] Figure 1: Primary, secondary and tertiary structure of hGBP1. §5§

   [44]Figure 1 : Primary, secondary and tertiary structure of hGBP1.
   Unfortunately we are unable to provide accessible alternative text for
   this. If you require assistance to access this image, or to obtain a
   text description, please contact npg@nature.com

   a, A model of the tertiary structure of hGBP1 presented as a ribbon,
   where the LG domain is in purple, the connecting region in green, the
   helical domain in yellow and alpha 12/ alpha 13 in cyan. Insertions,
   marked I2–I5 in b, are in violet. Dashed lines indicate disordered
   regions in the molecule. The tentative nucleotide-binding area,
   identified by a Ras–GBP overlay, is indicated by a sphere with radius
   7 Å. The topology is shown schematically using the same colour code. b,
   Sequence alignment of hGBP1 (Swissprot accession no. P32455) with Mag-2
   (EMBL acccession no. M81128) from mouse and chicken GBP1 (EMBL
   accession no. X92112), with the secondary structure assignment as
   determined using the programme DSSP^[45]29, with the same colour code
   as in a, and aligned with the secondary structure of Ras dot
   GppNHp^[46]30 (light blue lines). Contacts between helix alpha 12 and
   the rest of the protein are indicated: asterisk, direct; circle,
   water-mediated polar interactions; hash sign for both. For brevity,
   sequences with lowest homology have been chosen.
   [47]High resolution image and legend (233K)

 §5§ [48] Table 1: Crystallographic data statistics §5§

   [49]Table 1 - Crystallographic data statistics

   [50]Full table

   The LG domain of GBPs contains the conserved sequence elements of
   GTP-binding proteins with modifications. Originally the N/TKxD motif
   was believed to be absent in the GBPs^[51]2. An Asp-Asn mutation can
   produce a change in specificity from guanine to xanthine nucleotides in
   many GTP-binding proteins such as EF-Tu^[52]9. As an Asp-Asn mutation
   in the ^181TLRD^184 motif of hGBP1 behaves similarly, it is postulated
   that Asp 184 should bind the guanine base through a bidentate hydrogen
   bond^[53]8. It was thus expected that GBP1 would contain the Ras G
   domain or a variation thereof. The structure shows that the 278-residue
   globular domain largely resembles the canonical architecture of Ras (
   approx 170 residues), allowing for additions and insertions (labelled
   I). Superimposing the structures of hGBP1 and Ras-GDP ([54]Fig. 2a)
   gives a root mean square (r.m.s) deviation of 1.1 Å for 112 common C
   alpha atoms. The LG domain consists of an eight-stranded beta -sheet
   with six parallel and two anti-parallel strands surrounded by nine
   helices, whereas Ras contains six beta -strands and five helices
   ([55]Fig. 1b). Using the secondary structure elements of Ras as the
   basis for the comparison and retaining the corresponding numbering, the
   additional elements are beta 0, alpha 0 and beta -1 on the N-terminal
   side of the sheet, and helices alpha 3' (I3) and alpha 4' (I4)
   ([56]Fig. 1b). Apart from a short insertion (I1) in switch I, there are
   comparatively long loop insertions between the ^97DxxG^100 motif and
   alpha 2 (I2), and between beta 6 and alpha 5 (I5) of the canonical G
   domain, respectively ([57]Figs 1 and [58]2). Whereas I1, I2 and I5
   could be involved in nucleotide binding, I3 and I4, on the opposite
   side of the protein, apparently mediate contact with the C-terminal
   helix.

 §5§ [59] Figure 2: Comparison of hGBP1 and Ras structures. §5§

   [60]Figure 2 : Comparison of hGBP1 and Ras structures. Unfortunately we
   are unable to provide accessible alternative text for this. If you
   require assistance to access this image, or to obtain a text
   description, please contact npg@nature.com

   a, Superimposition of the LG domain of hGBP1 with the G domain of Ras
   in complex with GDP(PDB accession no. 1Q21) as a stereo view.
   N-terminal residues 1–36 of hGBP1 up to beta 1 have been omitted for
   clarity. The colour code is as in [61]Fig. 1; Ras is in cyan. b,
   Putative location of nucleotide-binding site in hGBP1. The regions of
   hGBP1 potentially involved in binding the guanine nucleotide are shown
   as obtained from a structural superimposition of RasGDP (in cyan) with
   the corresponding regions in hGBP1 (purple), highlighting functionally
   important residues necessary for binding and conformational change as
   balls or in ball-and-stick. Whereas Gly 60^ras overlays very well with
   Gly 100^hGBP1, residues D119/D184 and T35/T75 do not.
   [62]High resolution image and legend (79K)

   As GBP is stable in the absence of nucleotide, whereas Ras-like and G
   alpha GTP-binding proteins are not, it was of interest to investigate
   the effect of the absence of nucleotide on the structure. As all
   P-loop-containing proteins^[63]10 bind the beta / gamma -phosphate of
   the nucleotide in a similar manner, and as the role of Asp 184 in
   binding the guanine base is similar to that of the Asp of the canonical
   N/TKxD motif, we can locate the nucleotide-binding site of hGBP1 using
   the RasGDP–hGBP1 overlay ([64]Fig. 2b). From this comparison we can
   also see that, although part of the binding site is more accessible to
   the solvent than in Ras–nucleotide complexes, part of the polypeptide
   chain is in a position that interferes with nucleotide binding. Perhaps
   owing to the absence of nucleotide, the polypeptide chain around the
   binding site is mobile, as no electron density is visible for residues
   69–72 (I1) in the region analogous to switch I, residues 190–193 close
   to the ^181TLRD^184 motif and residues 244–257 in I5, close to the
   SAK/L motif, which is conserved only in the Ras family and is absent in
   GBPs.

   The (phosphate-binding) P loop^[65]10, residues 45–52, adopts a
   structure different from that of the Ras–nucleotide complexes. The
   invariant lysine residue of the P loop does not interact with the
   main-chain carbonyls for stabilization. Instead, in hGBP1 the loop is
   stabilized by interactions with the region analogous to switch II,
   involving hydrogen bonds between Tyr 47 (backbone N) and Asp 103,
   Lys 51 and Thr 98. Furthermore, the structure is not suited for
   nucleotide binding as the phosphates would clash with Tyr 47. The
   region corresponding to switch I in Ras is disordered in hGBP1. Thr 75
   appears to be analogous to Thr 35 in Ras, but is 5 Å away in the
   overlay ([66]Fig. 2b). The ^97DxxG^100 motif of hGBP1 superimposes well
   with that of switch II in Ras. D184 is 6 Å away from the corresponding
   D119 of the canonical N/TKxD motif and would have to move accordingly
   to occupy a similar position in the nucleotide-bound form. In general,
   it appears that the guanine nucleotide-binding site is partly open
   ([67]Fig. 2a, [68]b) such that the incoming nucleotide would enter the
   binding site base first and would then, after a corresponding
   conformational change, bind into the phosphate-binding area, as
   suggested for Ras by the structure of the Ras–Sos complex^[69]11.

   Ras proteins have an intrinsic GTPase reaction rate in the order of
   0-001–0.1 min^-1, whereas hGBP1 (ref. [70]8) has a rate of up to
   80 min^-1 (see below). The catalytic mechanism for Ras and G alpha
   proteins involves a glutamine (Gln 61 in Ras) that stabilizes the
   transition state and is itself stabilized by GAP in the GAP-catalysed
   mechanism^[71]12. As Gly 60^ras and Gly 100^hgbp1 are very close to
   each other ([72]Fig. 2b), we would predict that Gln 61 of Ras is
   structurally homologous to Leu 101 in hGBP1. Considering the importance
   of Gln 61 in the intrinsic and GAP-catalysed GTPase reaction of Ras, we
   conclude that the chemical mechanism of hydrolysis of GTP by hGBP1 is
   different from that of Ras. A similar hydrophobic residue corresponding
   to Gln 61 of Ras has also been identified in dynamins and Mx proteins.
   Discounting the influence of oligomerization on the rate of the GTPase
   reaction, only insertion I2 following Leu 101 appears to be close
   enough to the phosphate-binding site to be involved in catalysis. This
   ^103DxEKGD^108 motif is conserved in GBPs and contains charged residues
   that could have a catalytic role, either similar to that of the Arg in
   G alpha proteins or GAPs^[73]12 or as a catalytic base.

   The helical domain of hGBP1 can be considered to consist of two
   three-helix bundles, formed by helices alpha 7, alpha 8, alpha 9
   (residues 311–403) and helices alpha 9, alpha 10, alpha 11 (404–482),
   where helix alpha 9 is common to both ([74]Fig. 1a). Adjacent to and
   covering these two bundles is a very long helix alpha 12 that reaches
   back to the LG domain. This helix, which is predicted from the sequence
   to be a coiled-coil structure, is 78 residues long and stretches over
   118Å. At its C-terminal end there is a helical turn leading into
   another short helix, alpha 13, which makes a coiled-coil type of
   interaction with alpha 12. The last eight residues, including the
   prenylation-recognition Caax motif, not modified owing to recombinant
   expression in E. coli, are not visible in the structure.

   The two three-helix bundles give the molecule an elongated shape. The
   core of the helical domains is formed by hydrophobic residues, whereas
   the charged amino acids are exposed towards but interact only weakly
   with the residues from the long helix alpha 12. Thus, alpha 12 has
   almost no contact with the second (more remote) helical bundle (a
   single hydrogen bond between Glu 490 and Tyr 433, [75]Fig. 1b) whereas
   it forms seven direct side-chain and nine water-mediated contacts with
   the first. It is stabilized further by four direct and eight
   water-mediated contacts with insertions I3 and I4 ([76]Fig. 1) of the
   LG domain. The electrostatic surface potential ([77]Fig. 3) indicates
   that alpha 12 may mask some of the charged residues exposed by the two
   helical bundles. In conclusion, the helical domain appears to actually
   consist of two subdomains.

 §5§ [78] Figure 3: Interaction of the C-terminal helix motif alpha 12/13
with the helical and the LG domains. §5§

   [79]Figure 3 : Interaction of the C-terminal helix motif |[alpha]|12/13
   with the helical and the LG domains. Unfortunately we are unable to
   provide accessible alternative text for this. If you require assistance
   to access this image, or to obtain a text description, please contact
   npg@nature.com

   The electrostatic surface potential shows that the highly charged
   regions of the helical and LG domains are masked by an alpha 12/13
   motif, as indicated in the lower panel by showing alpha 12/ alpha 13 in
   worm representation.
   [80]High resolution image and legend (40K)

   Mx and dynamins are commonly grouped into a separate class of large
   GTP-binding proteins^[81]5. Proteins of this family have several
   variations in their domain structure, but they all possess at least a
   'GTPase' domain of approx 300 residues, a 'middle' or 'assembly' domain
   (150–200 residues) and a 'GED' domain (100 residues). These values are
   close to the sizes of the LG, helical bundle and alpha 12/13 domains of
   hGBP1, respectively. Biochemically, they share common properties such
   as relatively low affinity for nucleotides (K[m] 10–500 micro M), the
   ability to form oligomers and a high intrinsic rate of GTP hydrolysis
   (k[cat] 2–100 min^-1)^[82]5, ^[83]7. It was thus interesting to find
   out whether hGBP1 has to undergo multimerization to hydrolyse GTP
   rapidly, as observed for dynamin. [84]Figure 4a shows that the specific
   GTPase activity does increase at least eight-fold with increasing
   concentrations under the conditions employed. This clearly indicates a
   cooperative mechanism of GTP hydrolysis by hGBP1, similar to that
   observed for dynamin^[85]13. Note, however, that for technical reasons
   the data do not allow us to estimate the GTPase reaction rate at lower
   concentrations.

 §5§ [86] Figure 4: Cooperative GTP hydrolysis and nucleotide-dependent
multimerization of hGBP1. §5§

   [87]Figure 4 : Cooperative GTP hydrolysis and nucleotide-dependent
   multimerization of hGBP1. Unfortunately we are unable to provide
   accessible alternative text for this. If you require assistance to
   access this image, or to obtain a text description, please contact
   npg@nature.com

   a, Concentration dependence of the specific GTPase activity of hGBP1.
   The data were fitted to a model involving dimer formation yielding 0.6
   micro M for the apparent dimerization constant of hGBP1. b,
   Size-exclusion chromatography of GDP dot AlF[x]-, GppNHp-, GDP-bound
   and nucleotide-free hGBP1.
   [88]High resolution image and legend (20K)

   The homology to the dynamin family is further corroborated by
   demonstrating nucleotide-dependent oligomerization ([89]Fig. 4b). The
   elution profiles from standardized analytical size-exclusion
   chromatography show that hGBP1 is monomeric in the absence and in the
   presence of GDP, whereas it shows higher molecular mass when bound to
   the non-hydrolysable GTP analogue GppNHp. The molecular mass is higher
   again for hGBP1 in complex with GDP and aluminium fluoride which
   together are believed to mimic the transition state of GTP
   hydrolysis^[90]8, ^[91]12. It seems that, for efficient GTP hydrolysis
   to occur, higher order structures have to be formed, as suggested for
   dynamin^[92]13, ^[93]14, ^[94]15. The dependence of nucleotide
   hydrolysis on oligomerization has been proposed to be important for
   dynamin's ability to assemble around the necks of clathrin-coated
   vesicles and regulate receptor-mediated endocytosis. A role for the
   oligomerization-dependent hydrolysis of GTP by hGBP1 in
   interferon-mediated cellular functions remains to be established.

   In addition to the biochemical experiments, structural considerations
   lead us to propose that hGBP1 belongs to the dynamin family of large
   GTP-binding proteins. Secondary structure predictions suggest a helical
   and/or coiled-coil structure for the middle and GTPase effector (GED)
   domains of Mx and dynamin, just as the secondary structure prediction
   for alpha 7– alpha 12 of hGBP1 is in tune with the current structure.
   Limited proteolysis experiments^[95]16 and yeast two-hybrid
   studies^[96]17 have shown that the C-terminal end of Mx, which is
   required for fast GTP hydrolysis, contacts the nucleotide-binding
   domain and the middle domain just as helix alpha 12 folds back onto the
   LG domain and the helical bundles in the structure of hGBP1. A similar
   pattern of interactions has also been observed for dynamin where the
   binding of the GED domain to both the middle and the LG domain has been
   shown using various techniques^[97]18, ^[98]19. Similarly, the internal
   GAP-related GED domain of dynamin is implicated not only in GTP
   hydrolysis but also in the regulation of assembly: two processes that
   are intimately coupled^[99]14, ^[100]20. With the structure of hGBP1
   now available, we can design experiments to test the hypothesis of a
   common structural make-up for these proteins. We would also investigate
   the mechanism of GTP hydrolysis in GBPs, the unique nature of the
   resulting products (GMP and GDP) and whether an internal helical GED
   domain with properties similar to that of dynamin exists in GBPs.
   Furthermore, the role of the C-terminal end in the biological function
   of GBPs in the antiviral defence should be investigated, as the
   functionally related Mx protein requires its C-terminal end to interact
   with thogoto virus nucleocapsids^[101]21.
   [102]Top of page

 §3§ Methods §3§

 §4§ Protein preparation §4§

   hGBP1 with an N-terminal His[6] tag was expressed from a pQE9 vector in
   E. coli strain BL21(DE3) as described^[103]8. The GTPase activity of
   hGBP1 was measured at 37 °C in a buffer containing 50 mM Tris/HCl,
   pH 8.0, 5 mM MgCl[2] and 300  micro M GTP. Aliquots were taken at
   adequate time intervals and the progress of GTP hydrolysis was analysed
   by reversed phase chromatography (C-18, Hypersil)^[104]8. Rates were
   derived from a linear fit to the initial reaction (<30% GTP
   hydrolysed).

   We analysed the states of multimerization of hGBP1 by size-exclusion
   chromatography (GFC-1300, Supelco). hGBP1 at 20 micro M was
   preincubated for 15 min with 200  micro M nucleotide and the column was
   equilibrated with 50 mM Tris/HCl pH 8.0, 5 mM MgCl[2] and 200  micro M
   of the corresponding nucleotide, or in addition with 300  micro M
   AlCl[3] and 10 mM NaF. Elution volumes (V[e]/V[0]) were compared to
   those of standard proteins.

 §4§ Crystallography §4§

   We used full-length his[6]-tagged hGBP1 (40 mg ml^-1) to grow crystals
   in hanging drops over a reservoir solution of 5% PEG6000 (polyethylene
   glycol), 100 mM MES-NaOH, pH 6.0 at 20 °C. Owing to a cloning artefact,
   we used the Q507H mutation of hGBP1, which does not alter the
   biochemical properties. We collected a high-resolution native data set
   to 1.8 Å resolution at 100K at BW6 beamline (DESY) and processed with
   XDS: better completeness and redundancy were achieved by merging this
   data with a 2.4 Å native data set collected on a rotating anode. The
   statistics of the native and derivative data used for phasing are shown
   in [105]Table 1. All crystallographic calculations were performed using
   the CCP4 suite of programs^[106]20 unless stated otherwise. Heavy atom
   sites, initially identified by SOLVE^[107]22 and later by
   difference-Fourier maps, were refined and phase information was
   generated using MLPHARE. We improved the MIRAS phases by solvent
   flattening and histogram matching with DM. However, three of the
   derivatives shared common major sites, as reflected in the high figure
   of merit shown in [108]Table 1. The map thus obtained posed
   difficulties in tracing the polypeptide chain. We therefore used
   wARP^[109]23 to improve the MIRAS phases and extend the map to 1.8 Å
   resolution. The resulting maps considerably facilitated map
   interpretation and model building. At this stage, electron-density maps
   from two multi-wavelength anomalous dispersion (MAD) experiments with
   Au and Hg derivatives, performed at beamline BM14 (ESRF), aided map
   interpretation. The poor quality of crystals used for MAD experiments
   and non-isomorphism between crystals resulted in poorer maps upon
   combining the MAD and MIRAS phases. we subjected an initial model
   consisting of 473 residues to iterative processes of building,
   refinement and phase combination before arriving at a final model
   containing 548 residues and 341 water molecules. The atomic model was
   built using program O^24, and all refinement, consisting of
   bulk-solvent correction, positional, torsion angle simulated annealing
   and B-factor refinement, was carried out with CNS^[110]25. Composite
   simulated annealing omit maps were used to correct or build ambiguous
   regions of the model. The Ramachandran plot (not shown) depicts 96% of
   the main-chain torsion angles in the most favoured regions, with no
   amino acids in the disallowed regions. The current model extends from
   His 6 to Met 583. The loops comprising residues 63–72, 157–166, 190–193
   and 244–256 cannot be seen in the electron density and are presumably
   disordered. Figures were generated using Molscript^[111]26 and
   Raster3D^[112]27. The electrostatic surface potential was generated
   using GRASP^[113]28.

   [114]Top of page

 §3§ References §3§

    1. Cheng, Y.-S. E. , Colonno, R. J. & Yin, F. H. Interferon induction
       of fibroblast proteins with guanylate binding activity J. Biol.
       Chem. 258, 7746–7750
       (1983). | [115]PubMed | [116]ISI | [117]ChemPort |
    2. Cheng, Y.-S. E. , Patterson, C. E. & Staeheli, P.
       Interferon-induced guanylate-binding proteins lack an N(T)KXD
       consensus motif and bind GMP in addition to GDP and GTP Mol. Cell.
       Biol. 11, 4717–4725
       (1991). | [118]PubMed | [119]ISI | [120]ChemPort |
    3. Schwemmle, M. & Staeheli, P. The interferon-induced 67-kDa
       guanylate-binding protein (hGBP1) is a GTPase that converts GTP to
       GMP J. Biol. Chem. 269, 11299–11305
       (1994). | [121]PubMed | [122]ISI | [123]ChemPort |
    4. Anderson, S. L. , Carton, J. M. , Lou, J. , Xing, L. & Rubin, B. Y.
       Interferon-induced guanylate-binding protein-1 (GBP-1) mediates an
       antiviral effect against vesicular stomatitis virus and
       encephalomyocarditis virus Virology 256, 8–14
       (1999). | [124]Article | [125]PubMed | [126]ISI | [127]ChemPort |
    5. van der Bliek, A. M. Functional diversity in the dynamin family
       Trends Cell Biol. 9, 96–102
       (1999). | [128]Article | [129]PubMed | [130]ISI | [131]ChemPort |
    6. Boehm, U. et al. Two families of GTPases dominate the complex
       cellular response to IFN- gamma J. Immunol. 161, 6715–6723
       (1998). | [132]PubMed | [133]ISI | [134]ChemPort |
    7. Staeheli, P. , Pitossi, F. & Pavlovic, J. Mx proteins: GTPases with
       antiviral activity Trends Cell Biol. 3, 268–272
       (1993). | [135]Article | [136]PubMed | [137]ChemPort |
    8. Praefcke, G. J. K. , Geyer, M. , Schwemmle, M. , Kalbitzer, H. R. &
       Herrmann, C. Nucleotide-binding characteristics of human
       guanylate-binding protein 1 and identification of the third
       canonical GTP-binding motif J. Mol. Biol. 292, 321–332
       (1999) | [138]Article | [139]PubMed | [140]ISI | [141]ChemPort |
    9. Weijland, A. & Parmeggiani, A. Towards a model for the interaction
       between elongation factor Tu and the ribosome Science 259,
       1311–1314 (1993) | [142]PubMed | [143]ISI | [144]ChemPort |
   10. Saraste, M. , Sibbald, P. R. & Wittinghofer, A. The P-loop—a common
       motif in ATP- and GTP-binding proteins Trends. Biochem. Sci. 15,
       430–434 (1990). | [145]Article | [146]PubMed | [147]ISI |
   11. Boriack-Sjodin, P. A. , Margarit, S. M. , Barsagi, D. & Kuriyan, J.
       The structural basis of the activation of Ras by Sos Nature 394,
       337–343
       (1998). | [148]Article | [149]PubMed | [150]ISI | [151]ChemPort |
   12. Scheffzek, K. , Ahmadian, M. R. & Wittinghofer, A. GTPase
       activating proteins: helping hands to complement an active site
       Trends Biochem. Sci. 23, 257–262
       (1998). | [152]Article | [153]PubMed | [154]ISI | [155]ChemPort |
   13. Warnock, D. E. , Hinshaw, J. E. & Schmid, S. L. Dynamin
       self-assembly stimulates its GTPase activity J. Biol. Chem. 271,
       22310–22314
       (1996) | [156]Article | [157]PubMed | [158]ISI | [159]ChemPort |
   14. Sever, S. , Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's
       GAP domain stimulates receptor-mediated endocytosis. Nature 398,
       481–486
       (1999). | [160]Article | [161]PubMed | [162]ISI | [163]ChemPort |
   15. Stowell, M. H. B. , Marks, B. , Wigge, P. & McMahon, H. T.
       Nucleotide-dependent conformational changes in dynamin: evidence
       for a mechanochemical molecular spring Nature Cell Biol. 1, 27–32
       (1999).
   16. Schwemmle, M. , Richter, M. F. , Herrmann, C. , Nassar, N. &
       Staeheli, P. Unexpected structural requirements for GTPase activity
       of the interferon-induced MxA protein J. Biol. Chem. 270,
       13518–13523
       (1995). | [164]Article | [165]PubMed | [166]ISI | [167]ChemPort |
   17. Schumacher, B. & Staeheli, P. Domains mediating intramolecular
       folding and oligomerization of MxA GTPase J. Biol. Chem. 273,
       28365–28370
       (1998). | [168]Article | [169]PubMed | [170]ISI | [171]ChemPort |
   18. Smirnova, E. , Shurland, D-L. , Newman-Smith, E. D. , Pishvaee, B.
       & van der Bliek, A. M. A model for dynamin self–assembly based on
       binding between three different protein domains J. Biol. Chem. 274,
       14942–14947
       (1999) | [172]Article | [173]PubMed | [174]ISI | [175]ChemPort |
   19. Okamoto, P. M. , Tripet, B. , Litowski, J. , Hodges, R. S. &
       Vallee, R. B. Multiple distinct coiled-coils are involved in
       dynamin self-assembly J. Biol. Chem. 274, 10277–10286
       (1999). | [176]Article | [177]PubMed | [178]ISI | [179]ChemPort |
   20. Collaborative Computational project, N.4. The CCP4 suite: programs
       for protein crystallography Acta Crystallogr. D 50, 760–763 (1994).
   21. Kochs, G. & Haller, O. GTP-bound Human MxA protein interacts with
       the nucleocapsids of Thogoto virus (Orthomyxoviridae) J. Biol.
       Chem. 274, 4370–4376
       (1999) | [180]Article | [181]PubMed | [182]ISI | [183]ChemPort |
   22. Terwilliger, T. C. & Berendzen, J. Correlated phasing of multiple
       isomorphous replacement data Acta Crystallogr. D 52, 749–757
       (1996). | [184]Article | [185]ISI |
   23. Perrakis, A. , Sixma, T. K. , Wilson, K. S. & Lamzin, V. S.
       wARP:improvement and extension of crystallographic phases by
       weighted averaging of multiple refined dummy atomic models Acta
       Crystallogr. D 53, 448–455 (1997). | [186]Article | [187]ISI |
   24. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation
       Methods Enzymol. 277, 173–208
       (1997). | [188]Article | [189]ISI | [190]ChemPort |
   25. Brunger, A. T. et al. Crystallography and NMR system: a new
       software system for macromolecular structure determination Acta
       Crystallogr. D 54, 905–921 (1998). | [191]Article | [192]ISI |
   26. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and
       schematic plots of protein structures J. Appl. Crystallogr. 24,
       946–950 (1991). | [193]Article | [194]ISI |
   27. Merrit, E. A. & Murphy, M. E. P. Raster3D version 2.0. A program
       for photorealistic molecular graphics Acta Crystallogr. D 50,
       869–873 (1994). | [195]Article | [196]PubMed |
   28. Nicholls, A. , Sharp, K. A. & Honig, B. Protein folding and
       association: insights from the interfacial and thermodynamic
       properties of hydrocarbons Proteins 11, 281–296
       (1991) | [197]Article | [198]PubMed | [199]ISI | [200]ChemPort |
   29. Kabsch, W. & Sander, C. Dictionary of protein secondary structure:
       pattern recognition of hydrogen-bonded and geometrical features
       Biopolymers 22, 2577–2637
       (1983) | [201]Article | [202]PubMed | [203]ISI | [204]ChemPort |
   30. Pai, E. F. et al. Refined crystal structure of the triphosphate
       conformation of H-ras p21 at 1.35Å resolution: implications for the
       mechanism of GTP hydrolysis EMBO J. 9, 2351–2359
       (1990). | [205]PubMed | [206]ISI | [207]ChemPort |

   [208]Top of page

 §3§ Acknowledgements §3§

   The work was supported by the Deutsche Forschungsgemeinschaft (C.H.)
   and by Boehringer Ingelheim Fonds (G.J.K.P). We thank the staff at
   beamlines BW6, DESY, Hamburg and at BM-14, ESRF, Grenoble for help with
   data collection. We also thank I. Schlichting, I. Vetter and R. Hillig
   for discussions and M. Hess for help with figures. A. Beste for help
   with HPLC and R. Schebaum for secretarial assistance.
   [209]Top of page

 §1§ Main navigation §1§

 §2§ Journal content §2§

     * [210]Journal home
     * [211]Advance online publication
          + [212]About AOP
     * [213]Current issue
     * [214]Nature News
     * [215]Archive
     * [216]Supplements
          + [217]Insights
          + [218]Outlooks
          + [219]Collections
     * [220]Web focuses
          + [221]Biological sciences
          + [222]Earth and environment
          + [223]Horizons
          + [224]Physical sciences
          + [225]Science and politics
          + [226]Science, art and culture
     * [227]Podcasts
     * [228]Videos
     * [229]News Specials

 §2§ Journal information §2§

     * [230]About the journal
          + [231]Contact the journal
          + [232]About the editors
          + [233]Nature family of journals
          + [234]History of the Journal Nature
          + [235]For advertisers
          + [236]For librarians
     * [237]For authors
          + [238]Formatting guide
          + [239]Publication policies
          + [240]For referees
     * [241]Online submission
     * [242]Nature Awards
          + [243]Google Earth
     * [244]Nature history

 §2§ NPG Services §2§

     * [245]Advertising
     * [246]work@npg
     * [247]Reprints & permissions
     * [248]For librarians
     * [249]Authors & referees

 §2§ NPG Resources §2§

     * [250]Gateways & databases
     * [251]Nature Reports
     * [252]Nature Network
     * [253]nature.com blogs
     * [254]Nature Conferences
     * [255]Scitable Genetics

 §2§ NPG Journals §2§

 §3§ by Subject Area §3§

     *  §4§ Chemistry §4§
          + [256]Chemistry
          + [257]Drug discovery
          + [258]Biotechnology
          + [259]Materials
          + [260]Methods & Protocols
     *  §4§ Clinical Practice & Research §4§
          + [261]Cancer
          + [262]Cardiovascular medicine
          + [263]Dentistry
          + [264]Endocrinology
          + [265]Gastroenterology & Hepatology
          + [266]Methods & Protocols
          + [267]Pathology & Pathobiology
          + [268]Urology
     *  §4§ Earth & Environment §4§
          + [269]Earth sciences
          + [270]Evolution & Ecology
     *  §4§ Life sciences §4§
          + [271]Biotechnology
          + [272]Cancer
          + [273]Development
          + [274]Drug discovery
          + [275]Evolution & Ecology
          + [276]Genetics
          + [277]Immunology
          + [278]Medical research
          + [279]Methods & Protocols
          + [280]Microbiology
          + [281]Molecular cell biology
          + [282]Neuroscience
          + [283]Pharmacology
          + [284]Systems biology
     *  §4§ Physical sciences §4§
          + [285]Physics
          + [286]Materials

 §3§ [287]by A - Z Index §3§

 §1§ Extra navigation §1§

   .
   [288]Subscribe to Nature

 §2§ ARTICLE NAVIGATION -FULL TEXT §2§

   [289]Previous|[290]Next
     * [291]Table of contents
     * [292]Download PDF
     * [293]Send to a friend
     * [294]Scopus lists 96 articles citing this article
     * [295]Export citation
     * [296]Export references
     * [297]Rights and permissions
     * [298]Order commercial reprints
     * [299]Bookmark in Connotea
     * [300]Abstract
     * [301]Methods
     * [302]References
     * [303]Acknowledgements
     * [304]Figures and tables

 §2§ SEARCH PUBMED FOR §2§

     * [305]Balaji Prakash
     * [306]Gerrit J. K. Praefcke
     * [307]Louis Renault
     * [308]Alfred Wittinghofer
     * [309]Christian Herrmann

 §2§ [310]Open Innovation Challenges §2§

     *  §3§ [311]Novel Therapeutic Concepts to Treat Cancer §3§
          + Deadline: Oct 15 2010
          + Reward: $10,000 USD
       The Seeker is looking for novel, breakthrough, therapeutic concepts
       in the field of oncology. This …
     *  §3§ [312]Derivatives of Racemic 2-Hydroxy-4-(methylthio)butanoic
       Acid and 2-Hydroxy-4-(methylthio)butanenitri §3§
          + Deadline: Nov 15 2010
          + Reward: $25,000 USD
       This Challenge seeks commercial applications for chemical
       derivatives of racemic 2-hydroxy-4-(methyl…

     * [313]More Challenges
     * Powered by:[314] InnoCentive

 §2§ [315]nature jobs §2§

     *  §3§ [316]Researcher (Marioni Group) §3§
          + European Bioinformatics Institute (EBI)
          + Cambridge United Kingdom
     *  §3§ [317]Manager - SCI §3§
          + Indegene Life Systems Pvt. Ltd
          + Bangalore, Karnataka India

   [318]More science jobs
   [319]Post a job for free
   ADVERTISEMENT
   [320]Advertisement

   [321]Top
     * Nature
     * ISSN: 0028-0836
     * EISSN: 1476-4687

     * [322]About NPG
     * [323]Contact NPG
     * [324]RSS web feeds
     * [325]Help

     * [326]Privacy policy
     * [327]Legal notice
     * [328]Accessibility statement
     * [329]Terms

     * [330]Nature News
     * [331]Nature jobs
     * [332]Nature Asia
     * [333]Nature Education

   Search: ____________________ go

     * [334]© 2010 Nature Publishing Group, a division of Macmillan
       Publishers Limited. All Rights Reserved.
     * partner of [335]AGORA, HINARI, OARE, INASP, CrossRef and COUNTER

References

   1. http://www.nature.com/nature/
   2. http://www.nature.com/info/copyright_statement.html
   3. http://www.nature.com/help/
   4. http://www.nature.com/nature/current_issue/rss/index.html
   5. http://www.nature.com/opensearch/opensearch.xml
   6. http://www.nature.com/opensearch/request
   7. file://localhost/dev/paper.html#content
   8. file://localhost/dev/paper.html#journalnav
   9. http://www.nature.com/
  10. http://www.nature.com/siteindex/
  11. http://www.nature.com/browse/
  12. http://www.nature.com/myaccount/
  13. http://mts-nature.nature.com/cgi-bin/main.plex
  14. http://www.nature.com/register/
  15. https://secure.nature.com/subscribe/nature
  16. http://ad.doubleclick.net/jump/nature.com/article;abr=!NN2;tile=1;type=lt;artid=403567a0;date=200002;issue=6769;chaco=;keywd=;njdis=;njreg=;crstg=;pos=top;mesh=Amino%20Acid%20Sequence;mesh=Animals;mesh=Crystallography,%20X-Ray;mesh=DNA-Binding%20Proteins;mesh=Dynamins;mesh=Escherichia%20coli;mesh=GTP%20Phosphohydrolases;mesh=GTP-Binding%20Proteins;mesh=Humans;mesh=Models,%20Molecular;mesh=Molecular%20Sequence%20Data;mesh=Protein%20Conformation;mesh=Recombinant%20Proteins;mesh=Sequence%20Homology,%20Amino%20Acid;sz=728x90;ptile=1;ord=123456789?
  17. http://www.nature.com/nature/
  18. http://www.nature.com/search/adv_search?sp-a=sp1001702d&sp-x-1=ujournal&sp-q-1=Nature
  19. http://www.nature.com/nature/index.html
  20. http://www.nature.com/nature/archive/
  21. http://www.nature.com/nature/journal/v403/n6769/index.html#lt
  22. file://localhost/dev/paper.html#a1
  23. file://localhost/dev/paper.html#a1
  24. mailto:alfred.wittinghofer|[commat]|mpi-dortmund.mpg.de
  25. mailto:christian.herrmann|[commat]|mpi-dortmund.mpg.de
  26. file://localhost/dev/paper.html#top
  27. file://localhost/dev/paper.html#B1
  28. file://localhost/dev/paper.html#B2
  29. file://localhost/dev/paper.html#B3
  30. file://localhost/dev/paper.html#B4
  31. file://localhost/dev/paper.html#B5
  32. file://localhost/dev/paper.html#B1
  33. file://localhost/dev/paper.html#B2
  34. file://localhost/dev/paper.html#B6
  35. file://localhost/dev/paper.html#B7
  36. file://localhost/dev/paper.html#B4
  37. file://localhost/dev/paper.html#B3
  38. file://localhost/dev/paper.html#B8
  39. file://localhost/dev/paper.html#B3
  40. file://localhost/dev/paper.html#f1
  41. file://localhost/dev/paper.html#f1
  42. file://localhost/dev/paper.html#t1
  43. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F1.html
  44. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F1.html
  45. file://localhost/dev/paper.html#B29
  46. file://localhost/dev/paper.html#B30
  47. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F1.html
  48. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_T1.html
  49. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_T1.html
  50. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_T1.html
  51. file://localhost/dev/paper.html#B2
  52. file://localhost/dev/paper.html#B9
  53. file://localhost/dev/paper.html#B8
  54. file://localhost/dev/paper.html#f2
  55. file://localhost/dev/paper.html#f1
  56. file://localhost/dev/paper.html#f1
  57. file://localhost/dev/paper.html#f1
  58. file://localhost/dev/paper.html#f2
  59. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F2.html
  60. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F2.html
  61. file://localhost/dev/paper.html#f1
  62. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F2.html
  63. file://localhost/dev/paper.html#B10
  64. file://localhost/dev/paper.html#f2
  65. file://localhost/dev/paper.html#B10
  66. file://localhost/dev/paper.html#f2
  67. file://localhost/dev/paper.html#f2
  68. file://localhost/dev/paper.html#f2
  69. file://localhost/dev/paper.html#B11
  70. file://localhost/dev/paper.html#B8
  71. file://localhost/dev/paper.html#B12
  72. file://localhost/dev/paper.html#f2
  73. file://localhost/dev/paper.html#B12
  74. file://localhost/dev/paper.html#f1
  75. file://localhost/dev/paper.html#f1
  76. file://localhost/dev/paper.html#f1
  77. file://localhost/dev/paper.html#f3
  78. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F3.html
  79. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F3.html
  80. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F3.html
  81. file://localhost/dev/paper.html#B5
  82. file://localhost/dev/paper.html#B5
  83. file://localhost/dev/paper.html#B7
  84. file://localhost/dev/paper.html#f4
  85. file://localhost/dev/paper.html#B13
  86. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F4.html
  87. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F4.html
  88. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_F4.html
  89. file://localhost/dev/paper.html#f4
  90. file://localhost/dev/paper.html#B8
  91. file://localhost/dev/paper.html#B12
  92. file://localhost/dev/paper.html#B13
  93. file://localhost/dev/paper.html#B14
  94. file://localhost/dev/paper.html#B15
  95. file://localhost/dev/paper.html#B16
  96. file://localhost/dev/paper.html#B17
  97. file://localhost/dev/paper.html#B18
  98. file://localhost/dev/paper.html#B19
  99. file://localhost/dev/paper.html#B14
 100. file://localhost/dev/paper.html#B20
 101. file://localhost/dev/paper.html#B21
 102. file://localhost/dev/paper.html#top
 103. file://localhost/dev/paper.html#B8
 104. file://localhost/dev/paper.html#B8
 105. file://localhost/dev/paper.html#t1
 106. file://localhost/dev/paper.html#B20
 107. file://localhost/dev/paper.html#B22
 108. file://localhost/dev/paper.html#t1
 109. file://localhost/dev/paper.html#B23
 110. file://localhost/dev/paper.html#B25
 111. file://localhost/dev/paper.html#B26
 112. file://localhost/dev/paper.html#B27
 113. file://localhost/dev/paper.html#B28
 114. file://localhost/dev/paper.html#top
 115. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=6305951&dopt=Abstract
 116. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1983QV92800080&DestApp=WOS_CPL
 117. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaL3sXktlKqt7g%3D&pissn=0028-0836&pyear=2000&md5=0dd016cb3619e69aec47bed68da6a8d5
 118. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=1715024&dopt=Abstract
 119. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1991GC39600049&DestApp=WOS_CPL
 120. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK38XltV2ksbo%3D&pissn=0028-0836&pyear=2000&md5=8b46c9c6906f03427618a8fdf7587475
 121. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=7512561&dopt=Abstract
 122. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1994NF96600051&DestApp=WOS_CPL
 123. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK2cXktVemtrY%3D&pissn=0028-0836&pyear=2000&md5=cc8f390deaf595c44d6c5c788fc6734e
 124. http://dx.doi.org/10.1006/viro.1999.9614
 125. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=10087221&dopt=Abstract
 126. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000079615800002&DestApp=WOS_CPL
 127. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1MXhvFWiu74%3D&pissn=0028-0836&pyear=2000&md5=ace059e1fbe1168b6d63c4d4a904eda9
 128. http://dx.doi.org/10.1016/S0962-8924(98)01490-1
 129. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=10201074&dopt=Abstract
 130. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000079416800004&DestApp=WOS_CPL
 131. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1MXhvVKqtbk%3D&pissn=0028-0836&pyear=2000&md5=8073a90deb088b1820393ae7ac0932b2
 132. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9862701&dopt=Abstract
 133. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000077436400037&DestApp=WOS_CPL
 134. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1cXotFWqt74%3D&pissn=0028-0836&pyear=2000&md5=00e4540ee7d5bcb87b157b179e5e0ded
 135. http://dx.doi.org/10.1016/0962-8924(93)90055-6
 136. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=14731745&dopt=Abstract
 137. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK3sXlslKgs7w%3D&pissn=0028-0836&pyear=2000&md5=fa3990875f79587a818715240857552f
 138. http://dx.doi.org/10.1006/jmbi.1999.3062
 139. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=10493878&dopt=Abstract
 140. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000082597400011&DestApp=WOS_CPL
 141. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1MXlvFyksLw%3D&pissn=0028-0836&pyear=2000&md5=5d7c6d1f715f5016f6b372172e5536f5
 142. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=8446899&dopt=Abstract
 143. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1993KN88300027&DestApp=WOS_CPL
 144. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK3sXhvVGqtrw%3D&pissn=0028-0836&pyear=2000&md5=bf912b55cf47c86ee578dc93761083da
 145. http://dx.doi.org/10.1016/0968-0004(90)90281-F
 146. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=2126155&dopt=Abstract
 147. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1990EK82900010&DestApp=WOS_CPL
 148. http://www.nature.com/doifinder/10.1038/28548
 149. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9690470&dopt=Abstract
 150. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000074968800041&DestApp=WOS_CPL
 151. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1cXkvFKnsLs%3D&pissn=0028-0836&pyear=2000&md5=7f661ab9a8effaa09e543bb100a6707c
 152. http://dx.doi.org/10.1016/S0968-0004(98)01224-9
 153. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9697416&dopt=Abstract
 154. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000075160500011&DestApp=WOS_CPL
 155. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1cXkvFCltbs%3D&pissn=0028-0836&pyear=2000&md5=b072fa94b170fd0fac12604898090c8e
 156. http://dx.doi.org/10.1074/JBC.271.37.22310
 157. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=8798389&dopt=Abstract
 158. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1996VG67200008&DestApp=WOS_CPL
 159. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK28XlslaitL4%3D&pissn=0028-0836&pyear=2000&md5=5e8e38fefce813ea2714640bbe4453af
 160. http://www.nature.com/doifinder/10.1038/19024
 161. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=10206643&dopt=Abstract
 162. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000079662800039&DestApp=WOS_CPL
 163. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1MXisFGqs74%3D&pissn=0028-0836&pyear=2000&md5=1ac56dd2fbc7222e4210653eb8ce2abc
 164. http://dx.doi.org/10.1074/jbc.270.22.13512
 165. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=7539430&dopt=Abstract
 166. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1995RB43900083&DestApp=WOS_CPL
 167. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK2MXmtV2hsLo%3D&pissn=0028-0836&pyear=2000&md5=8b0292377f3a558e7c2fcf15396ce2d6
 168. http://dx.doi.org/10.1074/jbc.273.43.28365
 169. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9774462&dopt=Abstract
 170. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000076549800082&DestApp=WOS_CPL
 171. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1cXntVClsLw%3D&pissn=0028-0836&pyear=2000&md5=83e1d950975b18ca9c3ba474b24cec33
 172. http://dx.doi.org/10.1074/jbc.274.21.14942
 173. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=10329695&dopt=Abstract
 174. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000081965200060&DestApp=WOS_CPL
 175. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1MXks1Kqsbg%3D&pissn=0028-0836&pyear=2000&md5=5b3daa371ba5a59500413b07b40518d8
 176. http://dx.doi.org/10.1074/jbc.274.15.10277
 177. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=10187814&dopt=Abstract
 178. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000079663500053&DestApp=WOS_CPL
 179. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1MXis1Gjtbw%3D&pissn=0028-0836&pyear=2000&md5=0ba863ff3566ed82a27835c7cd9de28b
 180. http://dx.doi.org/10.1074/jbc.274.7.4370
 181. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=9933640&dopt=Abstract
 182. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000078575500064&DestApp=WOS_CPL
 183. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK1MXhslagsLo%3D&pissn=0028-0836&pyear=2000&md5=9a2d1f0fc6a3598f316fc59c4b750f28
 184. http://dx.doi.org/10.1107/S0907444996000832
 185. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1996UZ68600016&DestApp=WOS_CPL
 186. http://dx.doi.org/10.1107/S0907444997005696
 187. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1997XL06900012&DestApp=WOS_CPL
 188. http://dx.doi.org/10.1016/S0076-6879(97)77012-5
 189. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1997BJ57S00010&DestApp=WOS_CPL
 190. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK2sXntFamtr0%3D&pissn=0028-0836&pyear=2000&md5=f5bce44321969702238d92a5d4efce3d
 191. http://dx.doi.org/10.1107/S0108767398011465
 192. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=000075952200023&DestApp=WOS_CPL
 193. http://dx.doi.org/10.1107/S0021889891004399
 194. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1991GL62900080&DestApp=WOS_CPL
 195. http://dx.doi.org/10.1107/S0907444994006396
 196. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=15299354&dopt=Abstract
 197. http://dx.doi.org/10.1002/prot.340110407
 198. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=1758883&dopt=Abstract
 199. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1991GV03200006&DestApp=WOS_CPL
 200. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK38XhtVWgur4%3D&pissn=0028-0836&pyear=2000&md5=25bba3f4c9781b8e6e9b38b8a7dfdcfd
 201. http://dx.doi.org/10.1002/bip.360221211
 202. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=6667333&dopt=Abstract
 203. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1983RV60400010&DestApp=WOS_CPL
 204. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaL2cXkslegtQ%3D%3D&pissn=0028-0836&pyear=2000&md5=ac8e930d0a9eb4a907b8d40d90b6f6e3
 205. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?holding=npg&cmd=Retrieve&db=PubMed&list_uids=2196171&dopt=Abstract
 206. http://links.isiglobalnet2.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=Nature&SrcApp=Nature&DestLinkType=FullRecord&KeyUT=A1990DP59500001&DestApp=WOS_CPL
 207. http://chemport.cas.org/cgi-bin/sdcgi?APP=ftslink&action=reflink&origin=npg&version=1.0&coi=1:CAS:528:DyaK3cXltFWiu7k%3D&pissn=0028-0836&pyear=2000&md5=c69e8eb9dfd0d78df7fff85614780fad
 208. file://localhost/dev/paper.html#top
 209. file://localhost/dev/paper.html#top
 210. http://www.nature.com/nature/
 211. http://www.nature.com/nature/journal/vaop/ncurrent/index.html
 212. http://www.nature.com/authors/author_services/about_aop.html
 213. http://www.nature.com/nature/current_issue.html
 214. http://www.nature.com/news/
 215. http://www.nature.com/nature/archive/index.html
 216. http://www.nature.com/nature/supplements/
 217. http://www.nature.com/nature/supplements/insights/
 218. http://www.nature.com/nature/supplements/outlooks/
 219. http://www.nature.com/nature/supplements/collections/
 220. http://www.nature.com/nature/focus/
 221. http://www.nature.com/nature/focus/index_biologicalsciences.html
 222. http://www.nature.com/nature/focus/index_earthandenvironment.html
 223. http://www.nature.com/nature/focus/horizons/
 224. http://www.nature.com/nature/focus/index_physicalsciences.html
 225. http://www.nature.com/nature/focus/index_scienceandpolitics.html
 226. http://www.nature.com/nature/focus/index_scicult.html
 227. http://www.nature.com/nature/podcast/
 228. http://www.nature.com/nature/videoarchive/
 229. http://www.nature.com/news/specials/
 230. http://www.nature.com/nature/about/
 231. http://www.nature.com/nature/about/contact/
 232. http://www.nature.com/nature/about/editors/
 233. http://www.nature.com/nature/about/family/
 234. http://www.nature.com/nature/history/
 235. http://npg.nature.com/media/nature/index.html
 236. http://www.nature.com/libraries/
 237. http://www.nature.com/nature/authors/
 238. http://www.nature.com/nature/authors/gta/
 239. http://www.nature.com/nature/authors/policy/
 240. http://www.nature.com/nature/authors/referees/
 241. http://www.nature.com/nature/authors/submissions/
 242. http://www.nature.com/nature/awards/
 243. http://www.nature.com/nature/multimedia/googleearth
 244. http://www.nature.com/nature/history/index.html
 245. http://npg.nature.com/media/nature/index.html
 246. http://www.nature.com/npg_/work/index.html
 247. http://www.nature.com/reprints/
 248. http://www.nature.com/libraries/
 249. http://www.nature.com/authors/index.html
 250. http://www.nature.com/databases/index.html
 251. http://www.nature.com/reports/index.html
 252. http://network.nature.com/
 253. http://www.nature.com/blogs/index.html
 254. http://www.nature.com/natureconferences/
 255. http://www.nature.com/scitable/topics
 256. http://www.nature.com/chemistry/index.html
 257. http://www.nature.com/drugdisc/index.html
 258. http://www.nature.com/biotech/index.html
 259. http://www.nature.com/materials/index.html
 260. http://www.nature.com/protometh/index.html
 261. http://www.nature.com/cancer/index.html
 262. http://www.nature.com/cardio/index.html
 263. http://www.nature.com/dentistry/index.html
 264. http://www.nature.com/endocrinology/index.html
 265. http://www.nature.com/gastrohep/index.html
 266. http://www.nature.com/protometh/index.html
 267. http://www.nature.com/pathology/index.html
 268. http://www.nature.com/urology/index.html
 269. http://www.nature.com/earthsciences/index.html
 270. http://www.nature.com/evoeco/index.html
 271. http://www.nature.com/biotech/index.html
 272. http://www.nature.com/cancer/index.html
 273. http://www.nature.com/development/index.html
 274. http://www.nature.com/drugdisc/index.html
 275. http://www.nature.com/evoeco/index.html
 276. http://www.nature.com/genetics/index.html
 277. http://www.nature.com/immuno/index.html
 278. http://www.nature.com/medicalresearch/index.html
 279. http://www.nature.com/protometh/index.html
 280. http://www.nature.com/micro/index.html
 281. http://www.nature.com/molcellbio/index.html
 282. http://www.nature.com/neurosci/index.html
 283. http://www.nature.com/pharma/index.html
 284. http://www.nature.com/sysbio/index.html
 285. http://www.nature.com/physics/index.html
 286. http://www.nature.com/materials/index.html
 287. http://www.nature.com/siteindex/index.html
 288. https://secure.nature.com/store/svc/campaign?prod=NATURE&text=NA1001EF000
 289. http://www.nature.com/nature/journal/v403/n6769/full/403564a0.html
 290. http://www.nature.com/nature/journal/v403/n6769/full/403571a0.html
 291. http://www.nature.com/nature/journal/v403/n6769
 292. http://www.nature.com/nature/journal/v403/n6769/pdf/403567a0.pdf
 293. http://www.nature.com/nature/foxtrot/svc/mailform?doi=10.1038/35000617&file=/nature/journal/v403/n6769/full/403567a0.html
 294. http://www.scopus.com/inward/record.url?eid=2-s2.0-0034598734&partnerID=65
 295. http://www.nature.com/nature/journal/v403/n6769/ris/403567a0.ris
 296. http://www.nature.com/nature/journal/v403/n6769/ris/403567a0refs.ris
 297. https://s100.copyright.com/AppDispatchServlet?publisherName=NPG&publication=Nature&title=Structure%20of%20human%20guanylate-binding%20protein%201%20representing%20a%20unique%20class%20of%20GTP-binding%20proteins&author=Balaji%20Prakash,%20Gerrit%20J.%20K.%20Praefcke,%20Louis%20Renault,%20Alfred%20Wittinghofer%20and%20Christian%20Herrmann&contentID=10.1038/35000617&publicationDate=//&volumeNum=403&issueNum=6769&numPages=5&pageNumbers=pp567-571
 298. https://s100.copyright.com/AppDispatchServlet?publisherName=NPGR&publication=Nature&title=Structure%20of%20human%20guanylate-binding%20protein%201%20representing%20a%20unique%20class%20of%20GTP-binding%20proteins&author=Balaji%20Prakash,%20Gerrit%20J.%20K.%20Praefcke,%20Louis%20Renault,%20Alfred%20Wittinghofer%20and%20Christian%20Herrmann%20&contentID=10.1038/35000617&publicationDate=//&volumeNum=403&issueNum=6769&numPages=5&pageNumbers=pp567-571&orderBeanReset=true
 299. http://www.connotea.org/add?uri=http://www.nature.com/nature/journal/v403/n6769/full/403567a0.html
 300. file://localhost/dev/paper.html#abs
 301. file://localhost/dev/paper.html#Methods
 302. file://localhost/dev/paper.html#References
 303. file://localhost/dev/paper.html#acknowledgements
 304. http://www.nature.com/nature/journal/v403/n6769/fig_tab/403567a0_ft.html
 305. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Prakash+B
 306. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Praefcke+G
 307. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Renault+L
 308. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Wittinghofer+A
 309. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Herrmann+C
 310. http://www.nature.com/openinnovation?moreChallenges=true
 311. http://www.nature.com/openinnovation?challengeId=9701378
 312. http://www.nature.com/openinnovation?challengeId=9699787
 313. http://www.nature.com/openinnovation?moreChallenges=true
 314. http://www.innocentive.com/
 315. http://www.nature.com/naturejobs/
 316. http://www.nature.com/naturejobs/science/jobs/160994-Researcher-Marioni-Group
 317. http://www.nature.com/naturejobs/science/jobs/155943-Manager-SC
 318. http://www.nature.com/naturejobs/science/jobs
 319. http://www.nature.com/naturejobs/science/jobs/new
 320. http://ad.doubleclick.net/jump/nature.com/article;type=lt;artid=403567a0;pos=right;issue=6769;webfo=;prod=;natco=;natcl=;subco=;chaco=;keywd=;abr=!NN2;sz=160x600;ord=07893195?
 321. file://localhost/dev/paper.html#top
 322. http://www.nature.com/npg/
 323. http://www.nature.com/npg_/contact/
 324. http://www.nature.com/webfeeds/
 325. http://www.nature.com/help/
 326. http://www.nature.com/info/privacy.html
 327. http://www.nature.com/info/legal_notice.html
 328. http://www.nature.com/info/accessibility_statement.html
 329. http://www.nature.com/info/tandc.html
 330. http://www.nature.com/news/
 331. http://www.nature.com/naturejobs/
 332. http://www.natureasia.com/
 333. http://www.nature.com/scitable/
 334. http://www.nature.com/info/copyright_statement.html
 335. http://www.nature.com/info/partners.html

resources journal navigation
file://localhost/dev/stdin#resources-journal-nav

services journal navigation
file://localhost/dev/stdin#services-journal-nav

supplementary journal navigation
file://localhost/dev/stdin#supplementary-journal-nav

main journal navigation
file://localhost/dev/stdin#main-journal-nav