The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.
   [1]PNAS
   [2]Proceedings of the National Academy of Sciences of the United States
   of America

   [3]Skip to main page content
     * [4]Info for Authors
     * [5]Editorial Board
     * [6]About
     * [7]Subscribe
     * [8]Advertise
     * [9]Contact
     * [10]Feedback
     * [11]Site Map

     * [12]Keystone Symposia: 2010 Meetings
     * [13]Sign up for PNAS eTOCs
     * [14]Science Sessions: PNAS Podcast Program

     * Institution: UNIV COLORADO HLTH SCI CTR
     * [15]Sign In as Member / Individual

 ¤1¤ Structural evidence for a programmed general base in the active site of
a catalytic antibody ¤1¤

    1. [16]BŽatrice Golinelli-Pimpaneau [17]* , [18] ,
    2. [19]Olivier Gonalves [20]à,
    3. [21]Thierry Dintinger [22]à,
    4. [23]Dominique Blanchard [24]¤,
    5. [25]Marcel Knossow [26]*, and
    6. [27]Charles Tellier [28]*

    1.


    ^*Laboratoire d'Enzymologie et Biochimie Structurales, Centre
    National de la Recherche Scientifique, B‰timent 34, 1 Avenue de la
    Terrasse, 91198 Gif-sur-Yvette Cedex, France; ^àCentre National de la
    Recherche Scientifique-Formation de Recherche en Evolution 2230
    Biocatalyse, FacultŽ des Sciences et des Techniques, 2 Rue de la
    Houssinire, B.P. 92208, 44322 Nantes Cedex 03, France; and
    ^¤Laboratoire de Biotechnologie, Etablissement de Transfusion
    Sanguine, 34 Boulevard Jean Monnet, 44011 Nantes Cedex 01, France

    1. Edited by Richard A. Lerner, The Scripps Research Institute, La
       Jolla, CA, and approved June 27, 2000 (received for review April
       24, 2000)


   [29]Next Section

 ¤2¤ Abstract ¤2¤

   The crystal structure of the complex of a catalytic antibody with its
   cationic hapten at 1.9- resolution demonstrates that the hapten
   amidinium group is stabilized through an ionic pair interaction with
   the carboxylate of a combining-site residue. The location of this
   carboxylate allows it to act as a general base in an allylic
   rearrangement. When compared with structures of other antibody
   complexes in which the positive moiety of the hapten is stabilized
   mostly by cationй interactions, this structure shows that the
   amidinium moiety is a useful candidate to elicit a carboxylate in an
   antibody combining site at a predetermined location with respect to the
   hapten. More generally, this structure highlights the advantage of a
   bidentate hapten for the programmed positioning of a chemically
   reactive residue in an antibody through charge complementarity to the
   hapten.

   Allylic rearrangements play a fundamental role in the biosynthesis of
   terpenes and steroid hormones and in the biodegradation of fatty acids
   ([30]1). The enzymatic rearrangement of β-γ unsaturated ketones
   requires a general base, usually a carboxylate, to abstract the
   α-proton of the ketone (Fig. [31]1; refs. [32]1 and [33]2). This
   reaction leads to a dienol or dienolate high-energy intermediate 3 that
   does not possess a charge complementing that of the carboxylate.
   Therefore, antibodies elicited against a hapten that mimics the
   transition state or the dienol intermediate of allylic rearrangement
   would acquire a properly positioned general base carboxylate to
   catalyze this reaction only by serendipity. However, the extensive
   experience available on catalytic antibodies ([34]3, [35]4) and the
   structures of catalytic antibodies elicited by transition state
   analogue haptens show that properly positioned chemically reactive
   residues are rarely present in the active site ([36]5). An alternative
   approach that aims to generate functional residues, also termed Òbait
   and switchÓ ([37]6, [38]7), uses a charged hapten to induce the
   required complementary charged residue ([39]8, [40]9). Haptens
   containing a positive charge have provided antibody catalysts for
   important reactions such as acyl transfer ([41]7), elimination ([42]9,
   [43]10), and phosphodiester hydrolysis ([44]11). However, in the
   absence of structural data, it is not possible to establish
   unambiguously the nature and identity of the catalytic residue that has
   been induced and the relationship between the location of the haptenic
   charge and the position of the catalytic residue in the antibody
   combining site.
   [45]Figure 1
   View larger version:
     * [46]In this window
     * [47]In a new window

     * [48]Download as PowerPoint Slide

   Figure 1

   Scheme of the reaction catalyzed by antibody 4B2. 4B2 catalyzes allylic
   rearrangement of α-cyclopent-1-en-1-yl-p-acetamidophenone 2 to
   α-cyclopentylidien-p-acetamidophenone 4 via the enediol intermediate 3,
   2-[4-(1-carboxy)propylamidobenzylamino]-3,4,5,6-tetrahydropyridinium.
   1a is the hapten used to generate 4B2. The structure that was
   determined is that of the complex of 4B2 with
   2-(4-aminobenzylamino)-3,4,5,6-tetrahydropyridinium 1b. Antibody 5C8
   was generated against hapten 5a, and its x-ray structure was determined
   in the presence of inhibitor 5b ([49]12).

   Indeed, in the few cases in which the use of a hapten containing a
   positively charged moiety successfully induced catalytic antibodies and
   in which the structure of the haptenÐantibody complex was determined,
   there was no negatively charged residue in the active site directly
   facing the positive charge, but stabilization of the haptenic charge
   was mediated mostly by cationй interactions ([50]12Ð[51]14). Herein,
   we report the structure, at 1.87- resolution, of the complex of an
   antibody catalyzing an allylic rearrangement with its cationic hapten.
   We provide direct evidence for an ionic pair interaction between the
   amidinium function of the hapten and a combining site carboxylate,
   which allows the precise positioning of this group, and show that this
   carboxylate is the general base responsible for catalysis.
   [52]Previous Section[53]Next Section

 ¤2¤ Materials and Methods ¤2¤

 ¤3¤ Fab Preparation, Purification, and Crystallization. ¤3¤

   The 4B2 antibody was purified from the ascitic fluid as described
   ([54]15). The Fab was generated by papain digestion of the antibody
   under standard conditions (30 mM Tris, pH 7.4/138 mM NaCl/1.25 mM
   EDTA/1.5 mM 2-mercaptoethanol) by using a 3% (wt/wt) papain-to-antibody
   ratio and a 9-h digestion time. Undigested IgG and Fc fragment were
   removed by DEAE anion exchange chromatography and gel filtration on a
   Sephacryl S100 HR column, and the Fab was purified further by ion
   exchange chromatography on a mono Q FPLC column by a NaCl gradient in
   20 mM ethanolamine buffer at pH 9.3.

   Crystals were grown at 4¡C by using the hanging-drop procedure in wells
   containing 1 ml of 16% (vol/vol) polyethylene glycol 4000, 3% (vol/vol)
   dioxan, 20% (vol/vol) glycerol, 0.2 M ammonium sulfate, 5 mM strontium
   chloride, and 20 mM sodium acetate (final pH 5). Drops consisting of a
   2-μl aliquot of a protein solution with hapten (0.25 mM hapten and 11.6
   mg of Fab per ml in 0.15 M NaCl/0.05% NaN[3]) were mixed with 2 μl of
   the well solution. Despite the simultaneous growth of thin needles and
   polyhedral-shaped crystals, this procedure yielded, in some drops,
   monocrystals of dimensions up to 0.7 × 0.45 × 0.35 mm^3.

 ¤3¤ X-Ray Data Collection and Structure Determination. ¤3¤

   Diffraction data were recorded by using one crystal kept at 4¡C on the
   W32 station of the Laboratoire pour l'Utilisation du Rayonnement
   ElectromagnŽtique (Orsay, France) synchrotron with a MAR Image Plate
   system. Data were processed with denzo and scalepack ([55]16), and
   statistics are shown in Table [56]1. The structure of the 4B2 Fab
   (IgG1, κ) was solved by molecular replacement with the program amore
   ([57]17); the models used were the Fv domain of Fab D23 (PDB code
   [58]1yec) and the CL-CH1 dimer of Fab 36-71 (PDB code [59]6fab). The
   atomic model was refined by alternating cycles of model reconstruction
   with the program o ([60]18) and of refinement with cns ([61]19). The
   final refinement statistics are given in Table [62]1. Fig. [63]2 AÐC
   was drawn with the program o ([64]18).
   View this table:
     * [65]In this window
     * [66]In a new window

   Table 1

   Data collection and refinement statistics for Fab 4B2 complexed with 1b
   [67]Figure 2
   View larger version:
     * [68]In this window
     * [69]In a new window

     * [70]Download as PowerPoint Slide

   Figure 2

   (A) Schematic view of the active site of the 4B2-1b complex. The ligand
   is in red; water molecules are indicated as red crosses; Glu L34 is
   indicated in green; the other polar residues are represented in blue.
   The Cαs of residues L32ÐL36, L89ÐL97, H35ÐH37, and H94ÐH99 in
   hypervariable loops L1, L3, H1, and H3 are shown in yellow. The
   aromatic residues (Trp H47, Phe L89, Tyr L96, Tyr L32, Trp H103, and
   Phe L98) that have hydrophobic interactions with the hapten have been
   represented, except Phe L98 and Trp H103 for reasons of clarity.
   Nitrogen Nδ1 of His H35 is involved in a conserved H bond with Nɛ1 of
   Trp H47. His H35 is therefore neutral but cannot play the role of a
   general base, because its protonated nitrogen Nɛ2 points toward the
   inside of the cavity. (B) Hydrogen bonding network established with
   catalytic residue Glu L34. Hydrogen bonds are shown as dashed lines. A
   Fobs-Fcalc electron density map calculated without the amidinium ligand
   is superimposed on the structure. The map is contoured at the level of
   two standard deviations. One of the oxygens of Glu L34 is hydrogen
   bonded to the protonated nitrogen Nɛ2 of His L36. This tautomeric form
   of His L36 is stabilized by an additional hydrogen bond between its Nδ1
   and the NHɛ1 of Trp H103. Residue His L36 is therefore neutral but
   cannot play the role of a general base, because its unprotonated
   nitrogen Nɛ1 points away from the substrate. (C) Comparison of the
   environment of the charge of the hapten in antibodies 5C8 (in blue) and
   4B2 (in yellow). 5C8 catalyzes the disfavored cyclization of an
   epoxyalcohol ([71]12). The α-carbons of residues of the combining site
   (L32ÐL38, L43ÐL50, L86ÐL93, L96, L98, H32ÐH39, H91ÐH95, and H102ÐH104)
   of 5C8 have been superimposed on those of 4B2 (the rms deviation is
   0.645 ). The bottom of the active sites is formed by identical
   residues in both antibodies (Phe L98, Trp H47, His H35, Trp H103, and
   Val H37). The distance between the nitrogen of 5b of 5C8 (light green)
   and the carbon between the two nitrogens of 1b of 4B2 (red) is 1.05 .
   In addition to the ionic interaction with glutamate L34, the hapten
   amidinium charge of 4B2 is stabilized through a cationй interaction
   with Phe L89, which is also involved in a stacking interaction with the
   amidine cycle. Residues of 5C8 involved in cationй interaction with
   the quaternary amine of 5b are (distance to the nitrogen) Tyr L91 (4.97
   ), Trp H103 (5.59 ), His H35 (4.55 ), His L89 (4.96 ), and Tyr L36
   (5.39 ). In addition, in 5C8, Asp H101 (for which there is no
   equivalent in 4B2 because of the short H3 loop of this antibody) and
   Asp H95, which are, respectively, 4  and 3.7  away from the positive
   charge, provide a second sphere polar environment to the quaternary
   amine ([72]12). Trp H47, Val H37, and Tyr L96 are not represented for
   reasons of clarity.
   [73]Previous Section[74]Next Section

 ¤2¤ Results ¤2¤

 ¤3¤ Catalytic Activity and Mechanism. ¤3¤

   Antibody 4B2 was generated against a cyclic amidinium hapten 1a (Fig.
   [75]1). This antibody catalyzes with significant rate enhancement (k
   [cat]/k [non] = 1,500) the allylic rearrangement of β-γ unsaturated
   ketone 2, which is structurally related to the hapten ([76]15), and the
   ring opening of 5-nitro-benzisoxazole in the Kemp elimination (k
   [cat]/k [non] = 18,000; ref. [77]20). Both reactions would be catalyzed
   by a residue acting as a general base to abstract the α-proton of β-γ
   unsaturated ketone in allylic isomerization or the proton of the
   isoxazole ring in the Kemp elimination. Three lines of evidence
   strongly suggest that a carboxylate residue acts as a base in the
   catalytic mechanism of allylic isomerization: the stereoselectivity of
   the α-proton exchange showed by deuterium NMR, the pH dependence of the
   reaction rate, and the effect of specific chemical modification of
   carboxylates ([78]15).

 ¤3¤ Interaction of the Hapten with the Active Site. ¤3¤

   The structure of 4B2 complexed to 1b, an analogue of hapten 1a lacking
   the linker arm to the carrier protein (Fig. [79]1), shows that the
   hapten is buried in a funnel-shaped deep cleft. The amidine is
   accommodated at the bottom of the pocket, which constitutes a highly
   hydrophobic environment where no water molecule was detected (Fig.
   [80]2 A). Such a cavity at the interface of the heavy- and light-chain
   variable domains has been described in antibodies catalyzing various
   reactions such as ester hydrolysis ([81]21), pericyclic reactions
   ([82]22, [83]23), epoxyalcohol cyclization ([84]12), or polyene
   cyclization ([85]14).

   The hapten establishes three hydrogen bonds with residues of the
   antibody. The terminal amine function, which is linked to the carrier
   protein for immunization is accessible to solvent and establishes a
   hydrogen bond with a main chain carbonyl oxygen and with a water
   molecule. The two NH groups of the amidinium are hydrogen bonded to the
   two oxygens of the Glu L34 carboxylate (Fig. [86]2 B). At the
   crystallization pH (pH = 5), which is close to the pH for optimal
   catalysis of allylic isomerization (pH 4.6), the L34 carboxylate
   deprotonated form is stabilized by a hydrogen bond network with His L36
   and Trp H103, which also likely positions the carboxylate side chain at
   the proper location to abstract a proton from the substrate
   stereoselectively. There are three other polar residues in the
   combining site (Fig. [87]2 A). They cannot play the role of a general
   base either, because they point toward the external medium (Asp H95) or
   because their protonated nitrogen points toward the hapten (His H35 and
   His L36) (Fig. [88]2 A and B). Taken together with the biochemical
   data, the structure identifies Glu L34 as the general base that
   abstracts the α-proton in the first step of allylic isomerization of 2
   to yield the dienol intermediate 3 (Fig. [89]1).

   Glutamate occurs at position L34 of only 5% of antibody sequences
   ([90]24). It is therefore tempting to suggest that the significant
   stabilization of the antibodyÐhapten complex provided by the
   glutamateÐamidinium interaction because of the bidentate nature of both
   groups has favored the selection of a glutamate at this position during
   antibody maturation. As a consequence of its bidentate character, the
   interactions that the amidinium group establishes are anisotropic. This
   property confers on the amidinium the potential to generate a precisely
   positioned complementary charged residue.

 ¤3¤ The Environment of the Charge of the Hapten. ¤3¤

   The directional property of the amidinium group is highlighted by a
   comparison of the 4B2 combining site to that of another catalytic
   antibody, 5C8, elicited against hapten 5a (Fig. [91]1) where the
   amidine group of 1a is replaced by a quaternary amine ([92]12). The
   piperidinium ring of inhibitor 5b and the amidinium ring of 1b occupy
   very similar positions at the bottom of the combining sites (Fig. [93]2
   C). Both haptens carry positively charged nitrogens that are positioned
   close to aromatic rings, as often observed in proteins ([94]25). In
   4B2, the charge of the amidinium group of the hapten is stabilized
   mainly by the ion pair with glutamate L34. By contrast, in antibody
   5C8, no carboxylate is available to stabilize the quaternary ammonium
   of 5b through a direct ionic interaction. In the 5C8Ð5b complex, the
   isotropic distribution of the charge of the quaternary ammonium group
   induces an environment consisting of distant polar and
   ¹-electron-containing residues that stabilize the charge in a diffuse
   fashion (Fig. [95]2 C). Such charged nitrogenÐaromatic interactions
   have also been observed in the structures of small molecules ([96]26),
   of antibody McPC603 bound to phosphorylcholine ([97]27), of antibody
   catalysts complexed with their aminophosphonic acid ([98]13) or N-oxide
   hapten ([99]14), and of acetylcholinesterase complexed with various
   quaternary amine ligands ([100]28).
   [101]Previous Section[102]Next Section

 ¤2¤ Discussion ¤2¤

   The induction of a precisely positioned carboxylate residue in an
   antibody combining site is of general use to generate catalysts for
   reactions requiring either a nucleophile ([103]29, [104]30) or a
   general base or acid as in enzyme-catalyzed proton transfer reactions
   ([105]2, [106]31, [107]32). The haptenÐ4B2 complex defines amidinium as
   a useful candidate for that purpose and provides a starting point for
   the design of haptens capable of eliciting more sophisticated
   constellations of catalytic residues in antibody combining sites. The
   induction of a second, planned, catalytic residue in the combining site
   of an antibody, which would enhance its catalytic efficiency, would be
   favored by incorporation in the same hapten structure of two bidentate
   charged groups. Such molecules that have been developed as specific
   protein binders ([108]33) would be logical hapten candidates to achieve
   this goal.

   Methods capable of eliciting chemically reactive groups in antibody
   combining sites such as those using haptenic charge ([109]6Ð[110]9),
   for which an unambiguous demonstration is presented here, or reactive
   immunization ([111]34) are particularly useful to produce efficient
   catalytic antibodies, especially when transition state analogues are
   difficult to synthesize or when reactions proceed via multiple
   transition states ([112]35). Indeed, these methods allow the use of a
   hapten that does not need to match precisely the transition state of
   the reaction but rather elicits a strategically positioned functional
   residue. Therefore, antibodies resulting from these strategies have
   been found to catalyze different reactions that use the same mechanism,
   provided that the various substrates possess the common chemical
   function with which the induced residue can react ([113]10, [114]36,
   [115]37). This finding is also illustrated by antibody 4B2, which
   catalyzes both the Kemp elimination ([116]20) and the allylic
   rearrangement of a β-γ unsaturated ketone.
   [117]Previous Section[118]Next Section

 ¤2¤ Acknowledgments ¤2¤

   We thank L. Tchertanova (Institut des Substances Naturelles, Centre
   National de la Recherche Scientifique, Gif-sur-Yvette) for surveying
   the Cambridge Database, J. Perez for helping us to use facilities at
   Laboratoire pour l'Utilisation du Rayonnement ElectromagnŽtique, Orsay,
   France, and J. Janin for reading the manuscript. Partial financial
   support was provided by the European Union Training and Mobility
   Research Grant ERBFMXCT 98-0193 (to M.K.), and the cost of this article
   was covered by the Centre National de la Recherche Scientifique,
   Groupement de Recherche 897.
   [119]Previous Section[120]Next Section

 ¤2¤ Footnotes ¤2¤

     * [121]↵   To whom reprint requests should be addressed. E-mail:
       beatrice.golinelli{at}lebs.cnrs-gif.fr.
     * This paper was submitted directly (Track II) to the PNAS office.
     * Data deposition: The atomic coordinates have been deposited in the
       Protein Data Bank, [122]www.rcsb.org (PDB ID code [123]1F3D).
     * Copyright © 2000, The National Academy of Sciences

   [124]Previous Section

 ¤2¤ References ¤2¤

    1. [125]↵
         1. Schwab J M ,
         2. Henderson B S
       (1990) Chem Rev 90:1203Ð1245.
    2. [126]↵
         1. Kim S W ,
         2. Cha S-S ,
         3. Cho H-S ,
         4. Kim J-S ,
         5. Ha N-C ,
         6. Cho M-J ,
         7. Joo S ,
         8. Kim K K ,
         9. Choi K Y ,
        10. Oh B-H
       (1997) Biochemistry 36:14030Ð14036, pmid:9369474.
       [127]CrossRef[128]Medline
    3. [129]↵
         1. Schultz P G ,
         2. Lerner R A
       (1995) Science 269:1835Ð1842, pmid:7569920.
       [130]Abstract/FREE Full Text
    4. [131]↵
         1. Blackburn G M ,
         2. Datta A ,
         3. Denham H ,
         4. Wentworth P
       (1998) Adv Phys Org Chem 31:249Ð392.
    5. [132]↵
         1. Thayer M M ,
         2. Olender E H ,
         3. Arvai A S ,
         4. Koike C K ,
         5. Canestrelli I L ,
         6. Stewart J D ,
         7. Benkovic S J ,
         8. Getzoff E D ,
         9. Roberts V A
       (1999) J Mol Biol 291:329Ð345, pmid:10438624.
       [133]CrossRef[134]Medline
    6. [135]↵
         1. Janda K D ,
         2. Weinhouse M I ,
         3. Schloeder D M ,
         4. Lerner R A ,
         5. Benkovic S J
       (1990) J Am Chem Soc 112:1274Ð1275.
       [136]CrossRef
    7. [137]↵
         1. Janda K D ,
         2. Weinhouse M I ,
         3. Danon T ,
         4. Pacelli K A ,
         5. Schloeder D M
       (1991) J Am Chem Soc 113:5427Ð5434.
       [138]CrossRef
    8. [139]↵
         1. Shokat K M ,
         2. Leumann C J ,
         3. Sugasawara R ,
         4. Schultz P G
       (1989) Nature (London) 338:269Ð271, pmid:2922053.
       [140]CrossRef[141]Medline
    9. [142]↵
         1. Thorn S N ,
         2. Daniels R G ,
         3. Auditor M-T M ,
         4. Hilvert D
       (1995) Nature (London) 373:228Ð230, pmid:7816136.
       [143]CrossRef[144]Medline
   10. [145]↵
         1. Romesberg F E ,
         2. Flanagan M E ,
         3. Uno T ,
         4. Schultz P G
       (1998) J Am Chem Soc 120:5160Ð5167.
       [146]CrossRef
   11. [147]↵
         1. Wentworth P, Jr ,
         2. Liu Y ,
         3. Wentworth A D ,
         4. Fan P ,
         5. Foley M J ,
         6. Janda K D
       (1998) Proc Natl Acad Sci USA 95:5971Ð5975, pmid:9600901.
       [148]Abstract/FREE Full Text
   12. [149]↵
         1. Gruber K ,
         2. Zhou B ,
         3. Houk K N ,
         4. Lerner R A ,
         5. Shevlin C G ,
         6. Wilson I A
       (1999) Biochemistry 38:7062Ð7074, pmid:10353817.
       [150]CrossRef[151]Medline
   13. [152]↵
         1. Hsieh-Wilson L C ,
         2. Schultz P G ,
         3. Stevens R C
       (1996) Proc Natl Acad Sci USA 93:5363Ð5367, pmid:8643580.
       [153]Abstract/FREE Full Text
   14. [154]↵
         1. Paschall C M ,
         2. Hasserodt J ,
         3. Jones T ,
         4. Lerner R A ,
         5. Janda K D ,
         6. Christianson D W
       (1999) Angew Chem Int Ed Engl 38:1743Ð1747.
       [155]CrossRef
   15. [156]↵
         1. Gonalves O ,
         2. Dintinger T ,
         3. Lebreton J ,
         4. Blanchard D ,
         5. Tellier C
       (2000) Biochem J 346:691Ð698, pmid:10698695.
   16. [157]↵
         1. Otwinovsky Z ,
         2. Minor W
       (1997) Methods Enzymol 276:307Ð325.
       [158]Web of Science
   17. [159]↵
         1. Navaza J
       (1994) Acta Crystallogr A 50:157Ð163.
       [160]CrossRef[161]Web of Science
   18. [162]↵
         1. Jones T A ,
         2. Zhou J-Y ,
         3. Cowan S W ,
         4. Kjeldgaard M
       (1991) Acta Crystallogr A 47:110Ð119, pmid:2025413.
   19. [163]↵
         1. Adams P D ,
         2. Pann N S ,
         3. Read R J ,
         4. BrŸnger A T
       (1997) Proc Natl Acad Sci USA 94:5018Ð5023, pmid:9144182.
       [164]Abstract/FREE Full Text
   20. [165]↵
         1. Genre-Grandpierre A ,
         2. Tellier C ,
         3. Loirat M-J ,
         4. Blanchard D ,
         5. Hodgson D R W ,
         6. Hollfelder F ,
         7. Kirby A J
       (1997) Bioorg Med Chem Lett 7:2497Ð2502.
       [166]CrossRef
   21. [167]↵
         1. Charbonnier J-B ,
         2. Carpenter E ,
         3. Gigant B ,
         4. Golinelli-Pimpaneau B ,
         5. Eshhar Z ,
         6. Green B S ,
         7. Knossow M
       (1995) Proc Natl Acad Sci USA 92:11721Ð11725, pmid:8524836.
       [168]Abstract/FREE Full Text
   22. [169]↵
         1. Ulrich H D ,
         2. Mundorff E ,
         3. Santarsiero B D ,
         4. Driggers E M ,
         5. Stevens R C ,
         6. Schultz P G
       (1997) Nature (London) 389:271Ð274, pmid:9305839.
       [170]CrossRef[171]Medline
   23. [172]↵
         1. Heine A ,
         2. Stura E A ,
         3. Yli-Kauhaluoma J T ,
         4. Gao C ,
         5. Deng Q ,
         6. Beno B R ,
         7. Houk K N ,
         8. Janda K D ,
         9. Wilson I A
       (1998) Science 279:1934Ð1940, pmid:9506943.
       [173]Abstract/FREE Full Text
   24. [174]↵
         1. Kabat E A ,
         2. Wu T T ,
         3. Perry H M ,
         4. Gottesman K S ,
         5. Foeller C
       (1991) Sequences of Proteins of Immunological Interest (U.S. Public
       Health Service, National Institutes of Health, Bethesda, MD), 5th
       Ed..
   25. [175]↵
         1. Gallivan J P ,
         2. Dougherty D A
       (1999) Proc Natl Acad Sci USA 96:9459Ð9464, pmid:10449714.
       [176]Abstract/FREE Full Text
   26. [177]↵
         1. Verdonk M L ,
         2. Boks G J ,
         3. Kooijman H ,
         4. Kanters J A ,
         5. Kroon J
       (1993) J Comput Aided Mol Des 7:173Ð182, pmid:8320555.
       [178]Medline
   27. [179]↵
         1. Dougherty D A ,
         2. Stauffer D A
       (1990) Science 250:1558Ð1560, pmid:2274786.
       [180]Abstract/FREE Full Text
   28. [181]↵
         1. Harel M ,
         2. Schalk I ,
         3. Ehret-Sabatier L ,
         4. Bouet F ,
         5. Goeldner M ,
         6. Hirth C ,
         7. Axelsen P H ,
         8. Silman I ,
         9. Sussman J L
       (1993) Proc Natl Acad Sci USA 90:9031Ð9035, pmid:8415649.
       [182]Abstract/FREE Full Text
   29. [183]↵
         1. Verschueren K H ,
         2. Seljee F ,
         3. Rozeboom H J ,
         4. Kalk K H ,
         5. Dijkstra B W
       (1993) Nature (London) 363:693Ð698, pmid:8515812.
       [184]CrossRef[185]Medline
   30. [186]↵
         1. Zechel D L ,
         2. Withers S G
       (2000) Acc Chem Res 33:11Ð18, pmid:10639071.
       [187]CrossRef[188]Medline[189]Web of Science
   31. [190]↵
         1. Davenport R C ,
         2. Bash P A ,
         3. Seaton B A ,
         4. Karplus M ,
         5. Petsko G A ,
         6. Ringe D
       (1991) Biochemistry 30:5821Ð5826, pmid:2043623.
       [191]CrossRef[192]Medline
   32. [193]↵
         1. Mitra B ,
         2. Kallarakal A T ,
         3. Kozarich J W ,
         4. Gerlt J A ,
         5. Clifton J G ,
         6. Petsko G A ,
         7. Kenyon G L
       (1995) Biochemistry 34:2777Ð2787, pmid:7893689.
       [194]CrossRef[195]Medline
   33. [196]↵
         1. Albert J S ,
         2. Peczuh M W ,
         3. Hamilton A D
       (1997) Bioorg Med Chem 5:1455Ð1467, pmid:9313852.
       [197]Medline
   34. [198]↵
         1. Wagner J ,
         2. Lerner R A ,
         3. Barbas C F, III
       (1995) Science 270:1797Ð1800, pmid:8525368.
       [199]Abstract/FREE Full Text
   35. [200]↵
         1. Koch T ,
         2. Reymond J-L ,
         3. Lerner R
       (1995) J Am Chem Soc 117:9383Ð9387.
   36. [201]↵
         1. Barbas C F, III ,
         2. Heine A ,
         3. Zhong G ,
         4. Hoffman T ,
         5. Gramatikova S ,
         6. Bjšrnestedt R ,
         7. List B ,
         8. Anderson J ,
         9. Stura E A ,
        10. Wilson I A ,
        11. et al.
       (1997) Science 278:2085Ð2092, pmid:9405338.
       [202]Abstract/FREE Full Text
   37. [203]↵
         1. Lin C-H ,
         2. Hoffman T Z ,
         3. Wirshing P ,
         4. Barbas C F, III ,
         5. Janda K D ,
         6. Lerner R A
       (1997) Proc Natl Acad Sci USA 94:11773Ð11776, pmid:9342312.
       [204]Abstract/FREE Full Text

     * [205]Add to CiteULike CiteULike
     * [206]Add to Complore Complore
     * [207]Add to Connotea Connotea
     * [208]Add to Del.icio.us Del.icio.us
     * [209]Add to Digg Digg
     * [210]Add to Facebook Facebook
     * [211]Add to Twitter Twitter

   [212]What's this?
   [213]Ç Previous | [214]Next Article È[215]Table of Contents

 ¤3¤ This Article ¤3¤

    1. PNAS August 29, 2000 vol. 97 no. 18 9892-9895

    1. [216]AbstractFree
    2. [217]Figures Only
    3. È Full Text
    4. [218]Full Text (PDF)

 ¤4¤ Classifications ¤4¤

    1.
          + Biological Sciences
               o [219]Biochemistry

 ¤4¤ Services ¤4¤

    1. [220]Email this article to a colleague
    2. [221]Alert me when this article is cited
    3. [222]Alert me if a correction is posted
    4. [223]Similar articles in this journal
    5. [224]Similar articles in ISI
    6. [225]Similar articles in PubMed
    7. [226]Add to My File Cabinet
    8. [227]Download to citation manager
    9. [228]Request copyright permission

 ¤4¤ Citing Articles ¤4¤

    1. [229]Load citing article information
    2. [230]Citing articles via CrossRef
    3. [231]Citing articles via Web of Science
    4. [232]Articles citing this article

 ¤4¤ Google Scholar ¤4¤

    1. [233]Articles by Golinelli-Pimpaneau, B.
    2. [234]Articles by Tellier, C.
    3. [235]Search for related content

 ¤4¤ PubMed ¤4¤

    1. [236]PubMed citation
    2. [237]Articles by Golinelli-Pimpaneau, B.
    3. [238]Articles by Tellier, C.
    4.

 ¤4¤ Related Content ¤4¤

    1. [239]Load related web page information

 ¤4¤ Social Bookmarking ¤4¤

    1.
          + [240]Add to CiteULike CiteULike
          + [241]Add to Complore Complore
          + [242]Add to Connotea Connotea
          + [243]Add to Del.icio.us Del.icio.us
          + [244]Add to Digg Digg
          + [245]Add to Facebook Facebook
          + [246]Add to Twitter Twitter
       [247]What's this?

 ¤3¤ Navigate This Article ¤3¤

    1. [248]Top
    2. [249]Abstract
    3. [250]Materials and Methods
    4. [251]Results
    5. [252]Discussion
    6. [253]Acknowledgments
    7. [254]Footnotes
    8. [255]References

   Search PNAS ____________________ GO
   [256]Link: Advanced Search

 ¤3¤ This Week's Issue ¤3¤

    1. [257]September 14, 2010, 107 (37)

    1. [258]Current Issue

 ¤4¤ From the Cover ¤4¤

     * [259]Eyeing neural circuits in Drosophila
     * [260]Optimizing live cell imaging
     * [261]Public perceptions of energy use
     * [262]Activating DNA mismatch repair
     * [263]Evolution of collective migration

    1. [264]Alert me to new issues of PNAS

     * [265]Early Edition
     * [266]Archives
     * [267]Online Submission

     * [268]Feature Articles
       (Expanded research articles of exceptional breadth)
     * [269]Commentaries
       (Expert commentary on leading research)
     * [270]Letters
       (Online-only letters to the editor)
     * [271]Inaugural Articles
       (Articles by recently elected NAS members)
     * [272]PNAS Profiles
       (Biographical profiles of Academy members)
     * [273]Sustainability Science
       (Interactions of human and environmental systems)
     * [274]Collected Papers
       (Editorials, Perspectives, Reviews, Colloquia, etc.)
     * [275]Special Features
       (Solicited articles on exceptional research topics)
     * [276]Sackler Colloquia
       (Scientific reports held under NAS auspices)
     * [277]Podcasts
       Brief podcasts with leading scientists

 ¤3¤ Most ¤3¤

     *  ¤4¤ Read ¤4¤
         1. [278]Molecular origins of fluorocarbon hydrophobicity
         2. [279]Public perceptions of energy consumption and savings
         3. [280]Detection of MLV-related virus gene sequences in blood of
            patients with chronic fatigue syndrome and healthy blood
            donors
         4. [281]Inaugural Article: The Lucretian swerve: The biological
            basis of human behavior and the criminal justice system
         5. [282]The most influential journals: Impact Factor and
            Eigenfactor
       [283]È View all Most Read articles
     *  ¤4¤ Cited ¤4¤
         1. [284]DNA Sequencing with Chain-Terminating Inhibitors
         2. [285]Electrophoretic Transfer of Proteins from Polyacrylamide
            Gels to Nitrocellulose Sheets: Procedure and Some Applications
         3. [286]Cluster analysis and display of genome-wide expression
            patterns
         4. [287]Significance analysis of microarrays applied to the
            ionizing radiation response
         5. [288]One-step inactivation of chromosomal genes in Escherichia
            coli K-12 using PCR products
       [289]È View all Most Cited articles

     * [290]Current Issue
     * [291]Archives
     * [292]Online Submission
     * [293]Info for Authors
     * [294]Editorial Board
     * [295]About

     * [296]Subscribe
     * [297]Advertise
     * [298]Contact
     * [299]Site Map

   [300]Copyright ©2010 by the National Academy of Sciences

References

   Visible links
   1. http://www.pnas.org/
   2. http://www.pnas.org/
   3. file://localhost/dev/paper.html#content-block
   4. http://www.pnas.org/misc/iforc.shtml
   5. http://www.pnas.org/misc/masthead.shtml
   6. http://www.pnas.org/misc/about.shtml
   7. http://www.pnas.org/subscriptions
   8. http://www.pnas.org/misc/about.shtml#advertising
   9. http://www.pnas.org/site/misc/contact.shtml
  10. http://www.pnas.org/cgi/feedback
  11. http://www.pnas.org/misc/sitemap.shtml
  12. http://www.pnas.org/cgi/adclick/?ad=22509&adclick=true&url=http%3A%2F%2Fwww.keystonesymposia.org%2F2010meetings
  13. http://www.pnas.org/cgi/adclick/?ad=21636&adclick=true&url=http%3A%2F%2Fwww.pnas.org%2Fcgi%2Falerts%2Fetoc
  14. http://www.pnas.org/cgi/adclick/?ad=19262&adclick=true&url=http%3A%2F%2Fwww.pnas.org%2Fmisc%2Fpodcasts.shtml
  15. http://www.pnas.org/login?uri=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F97%2F18%2F9892.long
  16. http://www.pnas.org/search?author1=B%C3%A9atrice+Golinelli-Pimpaneau&sortspec=date&submit=Submit
  17. file://localhost/dev/paper.html#aff-1
  18. file://localhost/dev/paper.html#fn-1
  19. http://www.pnas.org/search?author1=Olivier+Gon%C3%A7alves&sortspec=date&submit=Submit
  20. file://localhost/dev/paper.html#aff-1
  21. http://www.pnas.org/search?author1=Thierry+Dintinger&sortspec=date&submit=Submit
  22. file://localhost/dev/paper.html#aff-1
  23. http://www.pnas.org/search?author1=Dominique+Blanchard&sortspec=date&submit=Submit
  24. file://localhost/dev/paper.html#aff-1
  25. http://www.pnas.org/search?author1=Marcel+Knossow&sortspec=date&submit=Submit
  26. file://localhost/dev/paper.html#aff-1
  27. http://www.pnas.org/search?author1=Charles+Tellier&sortspec=date&submit=Submit
  28. file://localhost/dev/paper.html#aff-1
  29. file://localhost/dev/paper.html#sec-1
  30. file://localhost/dev/paper.html#ref-1
  31. file://localhost/dev/paper.html#F1
  32. file://localhost/dev/paper.html#ref-1
  33. file://localhost/dev/paper.html#ref-2
  34. file://localhost/dev/paper.html#ref-3
  35. file://localhost/dev/paper.html#ref-4
  36. file://localhost/dev/paper.html#ref-5
  37. file://localhost/dev/paper.html#ref-6
  38. file://localhost/dev/paper.html#ref-7
  39. file://localhost/dev/paper.html#ref-8
  40. file://localhost/dev/paper.html#ref-9
  41. file://localhost/dev/paper.html#ref-7
  42. file://localhost/dev/paper.html#ref-9
  43. file://localhost/dev/paper.html#ref-10
  44. file://localhost/dev/paper.html#ref-11
  45. http://www.pnas.org/content/97/18/9892/F1.expansion.html
  46. http://www.pnas.org/content/97/18/9892/F1.expansion.html
  47. http://www.pnas.org/content/97/18/9892/F1.expansion.html
  48. http://www.pnas.org/powerpoint/97/18/9892/F1
  49. file://localhost/dev/paper.html#ref-12
  50. file://localhost/dev/paper.html#ref-12
  51. file://localhost/dev/paper.html#ref-14
  52. file://localhost/dev/paper.html#abstract-1
  53. file://localhost/dev/paper.html#sec-4
  54. file://localhost/dev/paper.html#ref-15
  55. file://localhost/dev/paper.html#ref-16
  56. file://localhost/dev/paper.html#T1
  57. file://localhost/dev/paper.html#ref-17
  58. http://www.pnas.org/external-ref?link_type=PDB&access_num=1yec
  59. http://www.pnas.org/external-ref?link_type=PDB&access_num=6fab
  60. file://localhost/dev/paper.html#ref-18
  61. file://localhost/dev/paper.html#ref-19
  62. file://localhost/dev/paper.html#T1
  63. file://localhost/dev/paper.html#F2
  64. file://localhost/dev/paper.html#ref-18
  65. http://www.pnas.org/content/97/18/9892/T1.expansion.html
  66. http://www.pnas.org/content/97/18/9892/T1.expansion.html
  67. http://www.pnas.org/content/97/18/9892/F2.expansion.html
  68. http://www.pnas.org/content/97/18/9892/F2.expansion.html
  69. http://www.pnas.org/content/97/18/9892/F2.expansion.html
  70. http://www.pnas.org/powerpoint/97/18/9892/F2
  71. file://localhost/dev/paper.html#ref-12
  72. file://localhost/dev/paper.html#ref-12
  73. file://localhost/dev/paper.html#sec-1
  74. file://localhost/dev/paper.html#sec-8
  75. file://localhost/dev/paper.html#F1
  76. file://localhost/dev/paper.html#ref-15
  77. file://localhost/dev/paper.html#ref-20
  78. file://localhost/dev/paper.html#ref-15
  79. file://localhost/dev/paper.html#F1
  80. file://localhost/dev/paper.html#F2
  81. file://localhost/dev/paper.html#ref-21
  82. file://localhost/dev/paper.html#ref-22
  83. file://localhost/dev/paper.html#ref-23
  84. file://localhost/dev/paper.html#ref-12
  85. file://localhost/dev/paper.html#ref-14
  86. file://localhost/dev/paper.html#F2
  87. file://localhost/dev/paper.html#F2
  88. file://localhost/dev/paper.html#F2
  89. file://localhost/dev/paper.html#F1
  90. file://localhost/dev/paper.html#ref-24
  91. file://localhost/dev/paper.html#F1
  92. file://localhost/dev/paper.html#ref-12
  93. file://localhost/dev/paper.html#F2
  94. file://localhost/dev/paper.html#ref-25
  95. file://localhost/dev/paper.html#F2
  96. file://localhost/dev/paper.html#ref-26
  97. file://localhost/dev/paper.html#ref-27
  98. file://localhost/dev/paper.html#ref-13
  99. file://localhost/dev/paper.html#ref-14
 100. file://localhost/dev/paper.html#ref-28
 101. file://localhost/dev/paper.html#sec-4
 102. file://localhost/dev/paper.html#ack-1
 103. file://localhost/dev/paper.html#ref-29
 104. file://localhost/dev/paper.html#ref-30
 105. file://localhost/dev/paper.html#ref-2
 106. file://localhost/dev/paper.html#ref-31
 107. file://localhost/dev/paper.html#ref-32
 108. file://localhost/dev/paper.html#ref-33
 109. file://localhost/dev/paper.html#ref-6
 110. file://localhost/dev/paper.html#ref-9
 111. file://localhost/dev/paper.html#ref-34
 112. file://localhost/dev/paper.html#ref-35
 113. file://localhost/dev/paper.html#ref-10
 114. file://localhost/dev/paper.html#ref-36
 115. file://localhost/dev/paper.html#ref-37
 116. file://localhost/dev/paper.html#ref-20
 117. file://localhost/dev/paper.html#sec-8
 118. file://localhost/dev/paper.html#fn-group-1
 119. file://localhost/dev/paper.html#ack-1
 120. file://localhost/dev/paper.html#ref-list-1
 121. file://localhost/dev/paper.html#xref-fn-1-1
 122. http://www.rcsb.org/
 123. http://www.pnas.org/external-ref?link_type=PDB&access_num=1F3D
 124. file://localhost/dev/paper.html#fn-group-1
 125. file://localhost/dev/paper.html#xref-ref-1-1
 126. file://localhost/dev/paper.html#xref-ref-2-1
 127. http://www.pnas.org/external-ref?access_num=10.1021/bi971546+&link_type=DOI
 128. http://www.pnas.org/external-ref?access_num=9369474&link_type=MED
 129. file://localhost/dev/paper.html#xref-ref-3-1
 130. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=269/5232/1835
 131. file://localhost/dev/paper.html#xref-ref-4-1
 132. file://localhost/dev/paper.html#xref-ref-5-1
 133. http://www.pnas.org/external-ref?access_num=10.1006/jmbi.1999.2960&link_type=DOI
 134. http://www.pnas.org/external-ref?access_num=10438624&link_type=MED
 135. file://localhost/dev/paper.html#xref-ref-6-1
 136. http://www.pnas.org/external-ref?access_num=10.1021/ja00159a074&link_type=DOI
 137. file://localhost/dev/paper.html#xref-ref-7-1
 138. http://www.pnas.org/external-ref?access_num=10.1021/ja00014a039&link_type=DOI
 139. file://localhost/dev/paper.html#xref-ref-8-1
 140. http://www.pnas.org/external-ref?access_num=10.1038/338269a0&link_type=DOI
 141. http://www.pnas.org/external-ref?access_num=2922053&link_type=MED
 142. file://localhost/dev/paper.html#xref-ref-9-1
 143. http://www.pnas.org/external-ref?access_num=10.1038/373228a0&link_type=DOI
 144. http://www.pnas.org/external-ref?access_num=7816136&link_type=MED
 145. file://localhost/dev/paper.html#xref-ref-10-1
 146. http://www.pnas.org/external-ref?access_num=10.1021/ja9738992&link_type=DOI
 147. file://localhost/dev/paper.html#xref-ref-11-1
 148. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=95/11/5971
 149. file://localhost/dev/paper.html#xref-ref-12-1
 150. http://www.pnas.org/external-ref?access_num=10.1021/bi990210s&link_type=DOI
 151. http://www.pnas.org/external-ref?access_num=10353817&link_type=MED
 152. file://localhost/dev/paper.html#xref-ref-13-1
 153. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=93/11/5363
 154. file://localhost/dev/paper.html#xref-ref-14-1
 155. http://www.pnas.org/external-ref?access_num=10.1002/(SICI)1521-3773(19990614)38:12%3C1743::AID-ANIE1743%3E3.0.CO;2-3&link_type=DOI
 156. file://localhost/dev/paper.html#xref-ref-15-1
 157. file://localhost/dev/paper.html#xref-ref-16-1
 158. http://www.pnas.org/external-ref?access_num=A1997BH42P00020&link_type=ISI
 159. file://localhost/dev/paper.html#xref-ref-17-1
 160. http://www.pnas.org/external-ref?access_num=10.1107/S0108767393007597&link_type=DOI
 161. http://www.pnas.org/external-ref?access_num=A1994NG58500001&link_type=ISI
 162. file://localhost/dev/paper.html#xref-ref-18-1
 163. file://localhost/dev/paper.html#xref-ref-19-1
 164. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=94/10/5018
 165. file://localhost/dev/paper.html#xref-ref-20-1
 166. http://www.pnas.org/external-ref?access_num=10.1016/S0960-894X(97)10003-8&link_type=DOI
 167. file://localhost/dev/paper.html#xref-ref-21-1
 168. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=92/25/11721
 169. file://localhost/dev/paper.html#xref-ref-22-1
 170. http://www.pnas.org/external-ref?access_num=10.1038/38470&link_type=DOI
 171. http://www.pnas.org/external-ref?access_num=9305839&link_type=MED
 172. file://localhost/dev/paper.html#xref-ref-23-1
 173. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=279/5358/1934
 174. file://localhost/dev/paper.html#xref-ref-24-1
 175. file://localhost/dev/paper.html#xref-ref-25-1
 176. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=96/17/9459
 177. file://localhost/dev/paper.html#xref-ref-26-1
 178. http://www.pnas.org/external-ref?access_num=8320555&link_type=MED
 179. file://localhost/dev/paper.html#xref-ref-27-1
 180. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=250/4987/1558
 181. file://localhost/dev/paper.html#xref-ref-28-1
 182. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=90/19/9031
 183. file://localhost/dev/paper.html#xref-ref-29-1
 184. http://www.pnas.org/external-ref?access_num=10.1038/363693a0&link_type=DOI
 185. http://www.pnas.org/external-ref?access_num=8515812&link_type=MED
 186. file://localhost/dev/paper.html#xref-ref-30-1
 187. http://www.pnas.org/external-ref?access_num=10.1021/ar970172+&link_type=DOI
 188. http://www.pnas.org/external-ref?access_num=10639071&link_type=MED
 189. http://www.pnas.org/external-ref?access_num=000084992000003&link_type=ISI
 190. file://localhost/dev/paper.html#xref-ref-31-1
 191. http://www.pnas.org/external-ref?access_num=10.1021/bi00238a002&link_type=DOI
 192. http://www.pnas.org/external-ref?access_num=2043623&link_type=MED
 193. file://localhost/dev/paper.html#xref-ref-32-1
 194. http://www.pnas.org/external-ref?access_num=10.1021/bi00009a006&link_type=DOI
 195. http://www.pnas.org/external-ref?access_num=7893689&link_type=MED
 196. file://localhost/dev/paper.html#xref-ref-33-1
 197. http://www.pnas.org/external-ref?access_num=9313852&link_type=MED
 198. file://localhost/dev/paper.html#xref-ref-34-1
 199. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=270/5243/1797
 200. file://localhost/dev/paper.html#xref-ref-35-1
 201. file://localhost/dev/paper.html#xref-ref-36-1
 202. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=278/5346/2085
 203. file://localhost/dev/paper.html#xref-ref-37-1
 204. http://www.pnas.org/cgi/ijlink?linkType=ABST&journalCode=pnas&resid=94/22/11773
 205. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=CITEULIKE
 206. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=COMPLORE
 207. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=CONNOTEA
 208. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=DEL_ICIO_US
 209. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=DIGG
 210. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/short/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=FACEBOOK
 211. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=TWITTER
 212. http://www.pnas.org/help/social_bookmarks.dtl
 213. http://www.pnas.org/content/97/18/9886.short
 214. http://www.pnas.org/content/97/18/9896.short
 215. http://www.pnas.org/content/97/18.toc
 216. http://www.pnas.org/content/97/18/9892.abstract
 217. http://www.pnas.org/content/97/18/9892.figures-only
 218. http://www.pnas.org/content/97/18/9892.full.pdf+html
 219. http://www.pnas.org/search?tocsectionid=Biochemistry&sortspec=date&submit=Submit
 220. http://www.pnas.org/email?gca=pnas;97/18/9892&current-view-path=/content/97/18/9892.long
 221. http://www.pnas.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&cited_by_criteria_resid=pnas;97/18/9892&saveAlert=no&return-type=article&return_url=http://www.pnas.org/content/97/18/9892.long
 222. http://www.pnas.org/cgi/alerts/ctalert?alertType=correction&addAlert=correction&correction_criteria_value=97/18/9892&saveAlert=no&return-type=article&return_url=http://www.pnas.org/content/97/18/9892.long
 223. http://www.pnas.org/search?qbe=pnas;97/18/9892&citation=Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29:%209892&submit=yes
 224. http://www.pnas.org/external-ref?access_num=pnas%3B97%2F18%2F9892&link_type=ISI_RELATEDRECORDS
 225. http://www.pnas.org/external-ref?access_num=10963661&link_type=MED_NBRS
 226. http://www.pnas.org/cgi/folders?action=addtofolder&wherefrom=JOURNALS&wrapped_id=pnas;97/18/9892
 227. http://www.pnas.org/citmgr?gca=pnas;97/18/9892
 228. http://www.pnas.org/misc/rightperm.shtml
 229. http://www.pnas.org/content/97/18/9892.long?cited-by=yes&legid=pnas;97/18/9892#cited-by
 230. http://www.pnas.org/cgi/crossref-forward-links/97/18/9892
 231. http://www.pnas.org/external-ref?access_num=pnas%3B97%2F18%2F9892&link_type=ISI_CITING
 232. http://www.pnas.org/external-ref?access_num=http://www.pnas.org/cgi/content/abstract/97/18/9892&link_type=GOOGLESCHOLAR
 233. http://scholar.google.com/scholar?q=%22author%3AGolinelli-Pimpaneau%20author%3AB.%22
 234. http://scholar.google.com/scholar?q=%22author%3ATellier%20author%3AC.%22
 235. http://www.pnas.org/external-ref?access_num=http://www.pnas.org/cgi/content/abstract/97/18/9892&link_type=GOOGLESCHOLARRELATED
 236. http://www.pnas.org/external-ref?access_num=10963661&link_type=PUBMED
 237. http://www.pnas.org/external-ref?access_num=Golinelli-Pimpaneau%20B&link_type=AUTHORSEARCH
 238. http://www.pnas.org/external-ref?access_num=Tellier%20C&link_type=AUTHORSEARCH
 239. http://www.pnas.org/content/97/18/9892.long?related-urls=yes&legid=pnas;97/18/9892#related-urls
 240. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=CITEULIKE
 241. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=COMPLORE
 242. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=CONNOTEA
 243. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=DEL_ICIO_US
 244. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=DIGG
 245. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/short/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=FACEBOOK
 246. http://www.pnas.org/external-ref?tag_url=http://www.pnas.org/cgi/content/long/97/18/9892&title=Structural%20evidence%20for%20a%20programmed%20general%20base%20in%20the%20active%20site%20of%20a%20catalytic%20antibody+--+Golinelli-Pimpaneau%20et%20al.%2097%20%2818%29%3A%209892+--+PNAS&doi=&link_type=TWITTER
 247. http://www.pnas.org/help/social_bookmarks.dtl
 248. file://localhost/dev/paper.html#content-block
 249. file://localhost/dev/paper.html#abstract-1
 250. file://localhost/dev/paper.html#sec-1
 251. file://localhost/dev/paper.html#sec-4
 252. file://localhost/dev/paper.html#sec-8
 253. file://localhost/dev/paper.html#ack-1
 254. file://localhost/dev/paper.html#fn-group-1
 255. file://localhost/dev/paper.html#ref-list-1
 256. http://www.pnas.org/search
 257. http://www.pnas.org/content/current
 258. http://www.pnas.org/content/current
 259. http://www.pnas.org/content/107/37/16378
 260. http://www.pnas.org/content/107/37/16016
 261. http://www.pnas.org/content/107/37/16054
 262. http://www.pnas.org/content/107/37/16066
 263. http://www.pnas.org/content/107/37/16172
 264. http://www.pnas.org/cgi/alerts/etoc
 265. http://www.pnas.org/content/early/recent
 266. http://www.pnas.org/content
 267. http://www.pnas.org/site/misc/onlinesubmission.shtml
 268. http://www.pnas.org/cgi/collection/feature_articles
 269. http://www.pnas.org/content/by/section/Commentaries
 270. http://www.pnas.org/cgi/collection/letters
 271. http://www.pnas.org/cgi/collection/inaugurals
 272. http://www.pnas.org/cgi/collection/profiles
 273. http://www.pnas.org/site/misc/sustainability.shtml
 274. http://www.pnas.org/site/misc/collectedpapers.shtml
 275. http://www.pnas.org/site/misc/special.shtml
 276. http://www.pnas.org/site/misc/colloquia.shtml
 277. http://www.pnas.org/site/misc/podcasts.shtml
 278. http://www.pnas.org/cgi/content/short/107/31/13603?rss=1&ssource=mfc
 279. http://www.pnas.org/cgi/content/short/1001509107v1?rss=1&ssource=mfc
 280. http://www.pnas.org/cgi/content/short/1006901107v1?rss=1&ssource=mfc
 281. http://www.pnas.org/cgi/content/short/107/10/4499?rss=1&ssource=mfc
 282. http://www.pnas.org/cgi/content/short/106/17/6883?rss=1&ssource=mfc
 283. http://www.pnas.org/reports/mfr1.dtl
 284. http://www.pnas.org/cgi/content/short/74/12/5463?rss=1&ssource=mfc
 285. http://www.pnas.org/cgi/content/short/76/9/4350?rss=1&ssource=mfc
 286. http://www.pnas.org/cgi/content/short/95/25/14863?rss=1&ssource=mfc
 287. http://www.pnas.org/cgi/content/short/98/9/5116?rss=1&ssource=mfc
 288. http://www.pnas.org/cgi/content/short/97/12/6640?rss=1&ssource=mfc
 289. http://www.pnas.org/reports/mfc1.dtl
 290. http://www.pnas.org/content/current
 291. http://www.pnas.org/content
 292. http://www.pnas.org/misc/onlinesubmission.shtml
 293. http://www.pnas.org/misc/iforc.shtml
 294. http://www.pnas.org/misc/masthead.shtml
 295. http://www.pnas.org/misc/about.shtml
 296. http://www.pnas.org/subscriptions
 297. http://www.pnas.org/misc/about.shtml#advertising
 298. http://www.pnas.org/cgi/feedback
 299. http://www.pnas.org/misc/sitemap.shtml
 300. http://www.pnas.org/misc/terms.shtml

   Hidden links:
 301. http://www.pnas.org/entrez-links/10963661