The Perl Toolchain Summit needs more sponsors. If your company depends on Perl, please support this very important event.
#define IMAGER_NO_CONTEXT
#include "imager.h"
#include "draw.h"
#include "log.h"
#include "imageri.h"
#include "imrender.h"
#include <limits.h>
#define NDEBUG
#include <assert.h>

int
i_ppix_norm(i_img *im, i_img_dim x, i_img_dim y, i_color const *col) {
  i_color src;
  i_color work;
  int dest_alpha;
  int remains;

  if (!col->channel[3])
    return 0;

  switch (im->channels) {
  case 1:
    work = *col;
    i_adapt_colors(2, 4, &work, 1);
    i_gpix(im, x, y, &src);
    remains = 255 - work.channel[1];
    src.channel[0] = (src.channel[0] * remains
		      + work.channel[0] * work.channel[1]) / 255;
    return i_ppix(im, x, y, &src);

  case 2:
    work = *col;
    i_adapt_colors(2, 4, &work, 1);
    i_gpix(im, x, y, &src);
    remains = 255 - work.channel[1];
    dest_alpha = work.channel[1] + remains * src.channel[1] / 255;
    if (work.channel[1] == 255) {
      return i_ppix(im, x, y, &work);
    }
    else {
      src.channel[0] = (work.channel[1] * work.channel[0]
			+ remains * src.channel[0] * src.channel[1] / 255) / dest_alpha;
      src.channel[1] = dest_alpha;
      return i_ppix(im, x, y, &src);
    }

  case 3:
    work = *col;
    i_gpix(im, x, y, &src);
    remains = 255 - work.channel[3];
    src.channel[0] = (src.channel[0] * remains
		      + work.channel[0] * work.channel[3]) / 255;
    src.channel[1] = (src.channel[1] * remains
		      + work.channel[1] * work.channel[3]) / 255;
    src.channel[2] = (src.channel[2] * remains
		      + work.channel[2] * work.channel[3]) / 255;
    return i_ppix(im, x, y, &src);

  case 4:
    work = *col;
    i_gpix(im, x, y, &src);
    remains = 255 - work.channel[3];
    dest_alpha = work.channel[3] + remains * src.channel[3] / 255;
    if (work.channel[3] == 255) {
      return i_ppix(im, x, y, &work);
    }
    else {
      src.channel[0] = (work.channel[3] * work.channel[0]
			+ remains * src.channel[0] * src.channel[3] / 255) / dest_alpha;
      src.channel[1] = (work.channel[3] * work.channel[1]
			+ remains * src.channel[1] * src.channel[3] / 255) / dest_alpha;
      src.channel[2] = (work.channel[3] * work.channel[2]
			+ remains * src.channel[2] * src.channel[3] / 255) / dest_alpha;
      src.channel[3] = dest_alpha;
      return i_ppix(im, x, y, &src);
    }
  }
  return 0;
}

static void
cfill_from_btm(i_img *im, i_fill_t *fill, struct i_bitmap *btm, 
	       i_img_dim bxmin, i_img_dim bxmax, i_img_dim bymin, i_img_dim bymax);

void
i_mmarray_cr(i_mmarray *ar,i_img_dim l) {
  i_img_dim i;
  size_t alloc_size;

  ar->lines=l;
  alloc_size = sizeof(minmax) * l;
  /* check for overflow */
  if (alloc_size / l != sizeof(minmax)) {
    fprintf(stderr, "overflow calculating memory allocation");
    exit(3);
  }
  ar->data=mymalloc(alloc_size); /* checked 5jul05 tonyc */
  for(i=0;i<l;i++) {
    ar->data[i].max = -1;
    ar->data[i].min = i_img_dim_MAX;
  }
}

void
i_mmarray_dst(i_mmarray *ar) {
  ar->lines=0;
  if (ar->data != NULL) { myfree(ar->data); ar->data=NULL; }
}

void
i_mmarray_add(i_mmarray *ar,i_img_dim x,i_img_dim y) {
  if (y>-1 && y<ar->lines)
    {
      if (x<ar->data[y].min) ar->data[y].min=x;
      if (x>ar->data[y].max) ar->data[y].max=x;
    }
}

i_img_dim
i_mmarray_gmin(i_mmarray *ar,i_img_dim y) {
  if (y>-1 && y<ar->lines) return ar->data[y].min;
  else return -1;
}

i_img_dim
i_mmarray_getm(i_mmarray *ar,i_img_dim y) {
  if (y>-1 && y<ar->lines)
    return ar->data[y].max;
  else
    return i_img_dim_MAX;
}

#if 0
/* unused? */
void
i_mmarray_render(i_img *im,i_mmarray *ar,i_color *val) {
  i_img_dim i,x;
  for(i=0;i<ar->lines;i++) if (ar->data[i].max!=-1) for(x=ar->data[i].min;x<ar->data[i].max;x++) i_ppix(im,x,i,val);
}
#endif

static
void
i_arcdraw(i_img_dim x1, i_img_dim y1, i_img_dim x2, i_img_dim y2, i_mmarray *ar) {
  double alpha;
  double dsec;
  i_img_dim temp;
  alpha=(double)(y2-y1)/(double)(x2-x1);
  if (fabs(alpha) <= 1) 
    {
      if (x2<x1) { temp=x1; x1=x2; x2=temp; temp=y1; y1=y2; y2=temp; }
      dsec=y1;
      while(x1<=x2)
	{
	  i_mmarray_add(ar,x1,(i_img_dim)(dsec+0.5));
	  dsec+=alpha;
	  x1++;
	}
    }
  else
    {
      alpha=1/alpha;
      if (y2<y1) { temp=x1; x1=x2; x2=temp; temp=y1; y1=y2; y2=temp; }
      dsec=x1;
      while(y1<=y2)
	{
	  i_mmarray_add(ar,(i_img_dim)(dsec+0.5),y1);
	  dsec+=alpha;
	  y1++;
	}
    }
}

void
i_mmarray_info(i_mmarray *ar) {
  i_img_dim i;
  for(i=0;i<ar->lines;i++)
  if (ar->data[i].max!=-1)
    printf("line %"i_DF ": min=%" i_DF ", max=%" i_DF ".\n",
	   i_DFc(i), i_DFc(ar->data[i].min), i_DFc(ar->data[i].max));
}

static void
i_arc_minmax(i_int_hlines *hlines,i_img_dim x,i_img_dim y, double rad,float d1,float d2) {
  i_mmarray dot;
  double f;
  i_img_dim x1,y1;

  i_mmarray_cr(&dot, hlines->limit_y);

  x1=(i_img_dim)(x+0.5+rad*cos(d1*PI/180.0));
  y1=(i_img_dim)(y+0.5+rad*sin(d1*PI/180.0));

  /*  printf("x1: %d.\ny1: %d.\n",x1,y1); */
  i_arcdraw(x, y, x1, y1, &dot);

  x1=(i_img_dim)(x+0.5+rad*cos(d2*PI/180.0));
  y1=(i_img_dim)(y+0.5+rad*sin(d2*PI/180.0));

  for(f=d1;f<=d2;f+=0.01)
    i_mmarray_add(&dot,(i_img_dim)(x+0.5+rad*cos(f*PI/180.0)),(i_img_dim)(y+0.5+rad*sin(f*PI/180.0)));
  
  /*  printf("x1: %d.\ny1: %d.\n",x1,y1); */
  i_arcdraw(x, y, x1, y1, &dot);

  /* render the minmax values onto the hlines */
  for (y = 0; y < dot.lines; y++) {
    if (dot.data[y].max!=-1) {
      i_img_dim minx, width;
      minx = dot.data[y].min;
      width = dot.data[y].max - dot.data[y].min + 1;
      i_int_hlines_add(hlines, y, minx, width);
    }
  }

  /*  dot.info(); */
  i_mmarray_dst(&dot);
}

static void
i_arc_hlines(i_int_hlines *hlines,i_img_dim x,i_img_dim y,double rad,float d1,float d2) {
  if (d1 <= d2) {
    i_arc_minmax(hlines, x, y, rad, d1, d2);
  }
  else {
    i_arc_minmax(hlines, x, y, rad, d1, 360);
    i_arc_minmax(hlines, x, y, rad, 0, d2);
  }
}

/*
=item i_arc(im, x, y, rad, d1, d2, color)

=category Drawing
=synopsis i_arc(im, 50, 50, 20, 45, 135, &color);

Fills an arc centered at (x,y) with radius I<rad> covering the range
of angles in degrees from d1 to d2, with the color.

=cut
*/

void
i_arc(i_img *im, i_img_dim x, i_img_dim y,double rad,double d1,double d2,const i_color *val) {
  i_int_hlines hlines;
  dIMCTXim(im);

  im_log((aIMCTX,1,"i_arc(im %p,(x,y)=(" i_DFp "), rad %f, d1 %f, d2 %f, col %p)",
	  im, i_DFcp(x, y), rad, d1, d2, val));

  i_int_init_hlines_img(&hlines, im);

  i_arc_hlines(&hlines, x, y, rad, d1, d2);

  i_int_hlines_fill_color(im, &hlines, val);

  i_int_hlines_destroy(&hlines);
}

/*
=item i_arc_cfill(im, x, y, rad, d1, d2, fill)

=category Drawing
=synopsis i_arc_cfill(im, 50, 50, 35, 90, 135, fill);

Fills an arc centered at (x,y) with radius I<rad> covering the range
of angles in degrees from d1 to d2, with the fill object.

=cut
*/

#define MIN_CIRCLE_STEPS 8
#define MAX_CIRCLE_STEPS 360

void
i_arc_cfill(i_img *im, i_img_dim x, i_img_dim y,double rad,double d1,double d2,i_fill_t *fill) {
  i_int_hlines hlines;
  dIMCTXim(im);

  im_log((aIMCTX,1,"i_arc_cfill(im %p,(x,y)=(" i_DFp "), rad %f, d1 %f, d2 %f, fill %p)",
	  im, i_DFcp(x, y), rad, d1, d2, fill));

  i_int_init_hlines_img(&hlines, im);

  i_arc_hlines(&hlines, x, y, rad, d1, d2);

  i_int_hlines_fill_fill(im, &hlines, fill);

  i_int_hlines_destroy(&hlines);
}

static void
arc_poly(int *count, double **xvals, double **yvals,
	 double x, double y, double rad, double d1, double d2) {
  double d1_rad, d2_rad;
  double circum;
  i_img_dim steps, point_count;
  double angle_inc;

  /* normalize the angles */
  d1 = fmod(d1, 360);
  if (d1 == 0) {
    if (d2 >= 360) { /* default is 361 */
      d2 = 360;
    }
    else {
      d2 = fmod(d2, 360);
      if (d2 < d1)
	d2 += 360;
    }
  }
  else {
    d2 = fmod(d2, 360);
    if (d2 < d1)
      d2 += 360;
  }
  d1_rad = d1 * PI / 180;
  d2_rad = d2 * PI / 180;

  /* how many segments for the curved part? 
     we do a maximum of one per degree, with a minimum of 8/circle
     we try to aim at having about one segment per 2 pixels
     Work it out per circle to get a step size.

     I was originally making steps = circum/2 but that looked horrible.

     I think there might be an issue in the polygon filler.
  */
  circum = 2 * PI * rad;
  steps = circum;
  if (steps > MAX_CIRCLE_STEPS)
    steps = MAX_CIRCLE_STEPS;
  else if (steps < MIN_CIRCLE_STEPS)
    steps = MIN_CIRCLE_STEPS;

  angle_inc = 2 * PI / steps;

  point_count = steps + 5; /* rough */
  /* point_count is always relatively small, so allocation won't overflow */
  *xvals = mymalloc(point_count * sizeof(double)); /* checked 17feb2005 tonyc */
  *yvals = mymalloc(point_count * sizeof(double)); /* checked 17feb2005 tonyc */

  /* from centre to edge at d1 */
  (*xvals)[0] = x;
  (*yvals)[0] = y;
  (*xvals)[1] = x + rad * cos(d1_rad);
  (*yvals)[1] = y + rad * sin(d1_rad);
  *count = 2;

  /* step around the curve */
  while (d1_rad < d2_rad) {
    (*xvals)[*count] = x + rad * cos(d1_rad);
    (*yvals)[*count] = y + rad * sin(d1_rad);
    ++*count;
    d1_rad += angle_inc;
  }

  /* finish off the curve */
  (*xvals)[*count] = x + rad * cos(d2_rad);
  (*yvals)[*count] = y + rad * sin(d2_rad);
  ++*count;
}

/*
=item i_arc_aa(im, x, y, rad, d1, d2, color)

=category Drawing
=synopsis i_arc_aa(im, 50, 50, 35, 90, 135, &color);

Anti-alias fills an arc centered at (x,y) with radius I<rad> covering
the range of angles in degrees from d1 to d2, with the color.

=cut
*/

void
i_arc_aa(i_img *im, double x, double y, double rad, double d1, double d2,
	 const i_color *val) {
  double *xvals, *yvals;
  int count;
  dIMCTXim(im);

  im_log((aIMCTX,1,"i_arc_aa(im %p,(x,y)=(%f,%f), rad %f, d1 %f, d2 %f, col %p)",
	  im, x, y, rad, d1, d2, val));

  arc_poly(&count, &xvals, &yvals, x, y, rad, d1, d2);

  i_poly_aa(im, count, xvals, yvals, val);

  myfree(xvals);
  myfree(yvals);
}

/*
=item i_arc_aa_cfill(im, x, y, rad, d1, d2, fill)

=category Drawing
=synopsis i_arc_aa_cfill(im, 50, 50, 35, 90, 135, fill);

Anti-alias fills an arc centered at (x,y) with radius I<rad> covering
the range of angles in degrees from d1 to d2, with the fill object.

=cut
*/

void
i_arc_aa_cfill(i_img *im, double x, double y, double rad, double d1, double d2,
	       i_fill_t *fill) {
  double *xvals, *yvals;
  int count;
  dIMCTXim(im);

  im_log((aIMCTX,1,"i_arc_aa_cfill(im %p,(x,y)=(%f,%f), rad %f, d1 %f, d2 %f, fill %p)",
	  im, x, y, rad, d1, d2, fill));

  arc_poly(&count, &xvals, &yvals, x, y, rad, d1, d2);

  i_poly_aa_cfill(im, count, xvals, yvals, fill);

  myfree(xvals);
  myfree(yvals);
}

typedef i_img_dim frac;
static  frac float_to_frac(double x) { return (frac)(0.5+x*16.0); }

typedef void
(*flush_render_t)(i_img *im, i_img_dim l, i_img_dim r, i_img_dim y, const i_sample_t *cover, void *ctx);

static void
i_circle_aa_low(i_img *im, double x, double y, double rad, flush_render_t r, void *ctx);

static void
scanline_flush_color(i_img *im, i_img_dim l, i_img_dim y, i_img_dim width, const i_sample_t *cover, void *ctx);

static void
scanline_flush_fill(i_img *im, i_img_dim l, i_img_dim y, i_img_dim width, const i_sample_t *cover, void *ctx);

typedef struct {
  i_render r;
  i_color c;
} flush_color_t;

typedef struct {
  i_render r;
  i_fill_t *fill;
} flush_fill_t;

/*
=item i_circle_aa(im, x, y, rad, color)

=category Drawing
=synopsis i_circle_aa(im, 50, 50, 45, &color);

Anti-alias fills a circle centered at (x,y) for radius I<rad> with
color.

=cut
*/

void
i_circle_aa(i_img *im, double x, double y, double rad, const i_color *val) {
  flush_color_t fc;

  fc.c = *val;
  i_render_init(&fc.r, im, rad * 2 + 1);

  i_circle_aa_low(im, x, y, rad, scanline_flush_color, &fc);

  i_render_done(&fc.r);
}

/*
=item i_circle_aa_fill(im, x, y, rad, fill)

=category Drawing
=synopsis i_circle_aa_fill(im, 50, 50, 45, fill);

Anti-alias fills a circle centered at (x,y) for radius I<rad> with
fill.

=cut
*/

void
i_circle_aa_fill(i_img *im, double x, double y, double rad, i_fill_t *fill) {
  flush_fill_t ff;

  ff.fill = fill;
  i_render_init(&ff.r, im, rad * 2 + 1);

  i_circle_aa_low(im, x, y, rad, scanline_flush_fill, &ff);

  i_render_done(&ff.r);
}

static void
i_circle_aa_low(i_img *im, double x, double y, double rad, flush_render_t r,
		void *ctx) {
  i_color temp;
  i_img_dim ly;
  dIMCTXim(im);
  i_img_dim first_row = floor(y) - ceil(rad);
  i_img_dim last_row = ceil(y) + ceil(rad);
  double r_sqr = rad * rad;
  i_img_dim max_width = 2 * ceil(rad) + 1;
  unsigned char *coverage = NULL;
  size_t coverage_size;
  int sub;

  im_log((aIMCTX, 1, "i_circle_aa_low(im %p, centre(" i_DFp "), rad %.2f, r %p, ctx %p)\n",
	  im, i_DFcp(x, y), rad, r, ctx));

  if (first_row < 0)
    first_row = 0;
  if (last_row > im->ysize-1)
    last_row = im->ysize - 1;

  if (rad <= 0 || last_row < first_row) {
    /* outside the image */
    return;
  }

  coverage_size = max_width;
  coverage = mymalloc(coverage_size);

  for(ly = first_row; ly < last_row; ly++) {
    frac min_frac_x[16];
    frac max_frac_x[16];
    i_img_dim min_frac_left_x = im->xsize * 16;
    i_img_dim max_frac_left_x = -1;
    i_img_dim min_frac_right_x = im->xsize * 16;
    i_img_dim max_frac_right_x = -1;
    /* reset work_y each row so the error doesn't build up */
    double work_y = ly;
    double dy, dy_sqr;
      
    for (sub = 0; sub < 16; ++sub) {
      work_y += 1.0 / 16.0;
      dy = work_y - y;
      dy_sqr = dy * dy;

      if (dy_sqr < r_sqr) {
	double dx = sqrt(r_sqr - dy_sqr);
	double left_x = x - dx;
	double right_x = x + dx;
	frac frac_left_x = float_to_frac(left_x);
	frac frac_right_x = float_to_frac(right_x);

	if (frac_left_x < min_frac_left_x)
	  min_frac_left_x = frac_left_x;
	if (frac_left_x > max_frac_left_x)
	  max_frac_left_x = frac_left_x;
	if (frac_right_x < min_frac_right_x)
	  min_frac_right_x = frac_right_x;
	if (frac_right_x > max_frac_right_x)
	  max_frac_right_x = frac_right_x;
	min_frac_x[sub] = frac_left_x;
	max_frac_x[sub] = frac_right_x;
      }
      else {
	min_frac_x[sub] = max_frac_x[sub] = 0;
	max_frac_left_x = im->xsize * 16;
	min_frac_right_x = -1;
      }
    }

    if (min_frac_left_x != -1) {
      /* something to draw on this line */
      i_img_dim min_x = (min_frac_left_x / 16);
      i_img_dim max_x = (max_frac_right_x + 15) / 16;
      i_img_dim left_solid = (max_frac_left_x + 15) / 16;
      i_img_dim right_solid = min_frac_right_x / 16;
      i_img_dim work_x;
      i_img_dim frac_work_x;
      i_sample_t *cout = coverage;

      for (work_x = min_x, frac_work_x = min_x * 16;
	   work_x <= max_x;
	   ++work_x, frac_work_x += 16) {
	if (work_x <= left_solid || work_x >= right_solid) {
	  int pix_coverage = 0;
	  int ch;
	  double ratio;
	  i_img_dim frac_work_right = frac_work_x + 16;
	  for (sub = 0; sub < 16; ++sub) {
	    frac pix_left = min_frac_x[sub];
	    frac pix_right = max_frac_x[sub];
	    if (pix_left < pix_right
		&& pix_left < frac_work_right
		&& pix_right >= frac_work_x) {
	      if (pix_left < frac_work_x)
		pix_left = frac_work_x;
	      if (pix_right > frac_work_right)
		pix_right = frac_work_right;
	      pix_coverage += pix_right - pix_left;
	    }
	  }

	  assert(pix_coverage <= 256);
	  *cout++ = pix_coverage * 255 / 256;
	}
	else {
	  /* full coverage */
	  *cout++ = 255;
	}
      }
      r(im, min_x, ly, max_x - min_x + 1, coverage, ctx);
    }
  }

  myfree(coverage);
}

static void
scanline_flush_color(i_img *im, i_img_dim x, i_img_dim y, i_img_dim width, const unsigned char *cover, void *ctx) {
  flush_color_t *fc = ctx;

  i_render_color(&fc->r, x, y, width, cover, &fc->c);
}

static void
scanline_flush_fill(i_img *im, i_img_dim x, i_img_dim y, i_img_dim width, const unsigned char *cover, void *ctx) {
  flush_fill_t *ff = ctx;

  i_render_fill(&ff->r, x, y, width, cover, ff->fill);
}


/*
=item i_circle_out(im, x, y, r, col)

=category Drawing
=synopsis i_circle_out(im, 50, 50, 45, &color);

Draw a circle outline centered at (x,y) with radius r,
non-anti-aliased.

Parameters:

=over

=item *

(x, y) - the center of the circle

=item *

r - the radius of the circle in pixels, must be non-negative

=back

Returns non-zero on success.

Implementation:

=cut
*/

int
i_circle_out(i_img *im, i_img_dim xc, i_img_dim yc, i_img_dim r,
	     const i_color *col) {
  i_img_dim x, y;
  i_img_dim dx, dy;
  int error;
  dIMCTXim(im);

  im_log((aIMCTX, 1, "i_circle_out(im %p, centre(" i_DFp "), rad %" i_DF ", col %p)\n",
	  im, i_DFcp(xc, yc), i_DFc(r), col));

  im_clear_error(aIMCTX);

  if (r < 0) {
    im_push_error(aIMCTX, 0, "circle: radius must be non-negative");
    return 0;
  }

  i_ppix(im, xc+r, yc, col);
  i_ppix(im, xc-r, yc, col);
  i_ppix(im, xc, yc+r, col);
  i_ppix(im, xc, yc-r, col);

  x = 0;
  y = r;
  dx = 1;
  dy = -2 * r;
  error = 1 - r;
  while (x < y) {
    if (error >= 0) {
      --y;
      dy += 2;
      error += dy;
    }
    ++x;
    dx += 2;
    error += dx;

    i_ppix(im, xc + x, yc + y, col);
    i_ppix(im, xc + x, yc - y, col);
    i_ppix(im, xc - x, yc + y, col);
    i_ppix(im, xc - x, yc - y, col);
    if (x != y) {
      i_ppix(im, xc + y, yc + x, col);
      i_ppix(im, xc + y, yc - x, col);
      i_ppix(im, xc - y, yc + x, col);
      i_ppix(im, xc - y, yc - x, col);
    }
  }

  return 1;
}

/*
=item arc_seg(angle)

Convert an angle in degrees into an angle measure we can generate
simply from the numbers we have when drawing the circle.

=cut
*/

static i_img_dim
arc_seg(double angle, int scale) {
  i_img_dim seg = (angle + 45) / 90;
  double remains = angle - seg * 90; /* should be in the range [-45,45] */

  while (seg > 4)
    seg -= 4;
  if (seg == 4 && remains > 0)
    seg = 0;

  return scale * (seg * 2 + sin(remains * PI/180));
}

/*
=item i_arc_out(im, x, y, r, d1, d2, col)

=category Drawing
=synopsis i_arc_out(im, 50, 50, 45, 45, 135, &color);

Draw an arc outline centered at (x,y) with radius r, non-anti-aliased
over the angle range d1 through d2 degrees.

Parameters:

=over

=item *

(x, y) - the center of the circle

=item *

r - the radius of the circle in pixels, must be non-negative

=item *

d1, d2 - the range of angles to draw the arc over, in degrees.

=back

Returns non-zero on success.

Implementation:

=cut
*/

int
i_arc_out(i_img *im, i_img_dim xc, i_img_dim yc, i_img_dim r,
	  double d1, double d2, const i_color *col) {
  i_img_dim x, y;
  i_img_dim dx, dy;
  int error;
  i_img_dim segs[2][2];
  int seg_count;
  i_img_dim sin_th;
  i_img_dim seg_d1, seg_d2;
  int seg_num;
  i_img_dim scale = r + 1;
  i_img_dim seg1 = scale * 2;
  i_img_dim seg2 = scale * 4;
  i_img_dim seg3 = scale * 6;
  i_img_dim seg4 = scale * 8;
  dIMCTXim(im);

  im_log((aIMCTX,1,"i_arc_out(im %p,centre(" i_DFp "), rad %" i_DF ", d1 %f, d2 %f, col %p)",
	  im, i_DFcp(xc, yc), i_DFc(r), d1, d2, col));

  im_clear_error(aIMCTX);

  if (r <= 0) {
    im_push_error(aIMCTX, 0, "arc: radius must be non-negative");
    return 0;
  }
  if (d1 + 360 <= d2)
    return i_circle_out(im, xc, yc, r, col);

  if (d1 < 0)
    d1 += 360 * floor((-d1 + 359) / 360);
  if (d2 < 0)
    d2 += 360 * floor((-d2 + 359) / 360);
  d1 = fmod(d1, 360);
  d2 = fmod(d2, 360);
  seg_d1 = arc_seg(d1, scale);
  seg_d2 = arc_seg(d2, scale);
  if (seg_d2 < seg_d1) {
    /* split into two segments */
    segs[0][0] = 0;
    segs[0][1] = seg_d2;
    segs[1][0] = seg_d1;
    segs[1][1] = seg4;
    seg_count = 2;
  }
  else {
    segs[0][0] = seg_d1;
    segs[0][1] = seg_d2;
    seg_count = 1;
  }

  for (seg_num = 0; seg_num < seg_count; ++seg_num) {
    i_img_dim seg_start = segs[seg_num][0];
    i_img_dim seg_end = segs[seg_num][1];
    if (seg_start == 0)
      i_ppix(im, xc+r, yc, col);
    if (seg_start <= seg1 && seg_end >= seg1)
      i_ppix(im, xc, yc+r, col);
    if (seg_start <= seg2 && seg_end >= seg2)
      i_ppix(im, xc-r, yc, col);
    if (seg_start <= seg3 && seg_end >= seg3)
      i_ppix(im, xc, yc-r, col);

    y = 0;
    x = r;
    dy = 1;
    dx = -2 * r;
    error = 1 - r;
    while (y < x) {
      if (error >= 0) {
	--x;
	dx += 2;
	error += dx;
      }
      ++y;
      dy += 2;
      error += dy;
      
      sin_th = y;
      if (seg_start <= sin_th && seg_end >= sin_th)
	i_ppix(im, xc + x, yc + y, col);
      if (seg_start <= seg1 - sin_th && seg_end >= seg1 - sin_th)
	i_ppix(im, xc + y, yc + x, col);

      if (seg_start <= seg1 + sin_th && seg_end >= seg1 + sin_th)
	i_ppix(im, xc - y, yc + x, col);
      if (seg_start <= seg2 - sin_th && seg_end >= seg2 - sin_th)
	i_ppix(im, xc - x, yc + y, col);
      
      if (seg_start <= seg2 + sin_th && seg_end >= seg2 + sin_th)
	i_ppix(im, xc - x, yc - y, col);
      if (seg_start <= seg3 - sin_th && seg_end >= seg3 - sin_th)
	i_ppix(im, xc - y, yc - x, col);

      if (seg_start <= seg3 + sin_th && seg_end >= seg3 + sin_th)
	i_ppix(im, xc + y, yc - x, col);
      if (seg_start <= seg4 - sin_th && seg_end >= seg4 - sin_th)
	i_ppix(im, xc + x, yc - y, col);
    }
  }

  return 1;
}

static double
cover(i_img_dim r, i_img_dim j) {
  double rjsqrt = sqrt(r*r - j*j);

  return ceil(rjsqrt) - rjsqrt;
}

/*
=item i_circle_out_aa(im, xc, yc, r, col)

=synopsis i_circle_out_aa(im, 50, 50, 45, &color);

Draw a circle outline centered at (x,y) with radius r, anti-aliased.

Parameters:

=over

=item *

(xc, yc) - the center of the circle

=item *

r - the radius of the circle in pixels, must be non-negative

=item *

col - an i_color for the color to draw in.

=back

Returns non-zero on success.

=cut

Based on "Fast Anti-Aliased Circle Generation", Xiaolin Wu, Graphics
Gems.

I use floating point for I<D> since for large circles the precision of
a [0,255] value isn't sufficient when approaching the end of the
octant.

*/

int
i_circle_out_aa(i_img *im, i_img_dim xc, i_img_dim yc, i_img_dim r, const i_color *col) {
  i_img_dim i, j;
  double t;
  i_color workc = *col;
  int orig_alpha = col->channel[3];
  dIMCTXim(im);

  im_log((aIMCTX,1,"i_circle_out_aa(im %p,centre(" i_DFp "), rad %" i_DF ", col %p)",
	  im, i_DFcp(xc, yc), i_DFc(r), col));

  im_clear_error(aIMCTX);
  if (r <= 0) {
    im_push_error(aIMCTX, 0, "arc: radius must be non-negative");
    return 0;
  }
  i = r;
  j = 0;
  t = 0;
  i_ppix_norm(im, xc+i, yc+j, col);
  i_ppix_norm(im, xc-i, yc+j, col);
  i_ppix_norm(im, xc+j, yc+i, col);
  i_ppix_norm(im, xc+j, yc-i, col);

  while (i > j+1) {
    double d;
    int cv, inv_cv;
    j++;
    d = cover(r, j);
    cv = (int)(d * 255 + 0.5);
    inv_cv = 255-cv;
    if (d < t) {
      --i;
    }
    if (inv_cv) {
      workc.channel[3] = orig_alpha * inv_cv / 255;
      i_ppix_norm(im, xc+i, yc+j, &workc);
      i_ppix_norm(im, xc-i, yc+j, &workc);
      i_ppix_norm(im, xc+i, yc-j, &workc);
      i_ppix_norm(im, xc-i, yc-j, &workc);

      if (i != j) {
	i_ppix_norm(im, xc+j, yc+i, &workc);
	i_ppix_norm(im, xc-j, yc+i, &workc);
	i_ppix_norm(im, xc+j, yc-i, &workc);
	i_ppix_norm(im, xc-j, yc-i, &workc);
      }
    }
    if (cv && i > j) {
      workc.channel[3] = orig_alpha * cv / 255;
      i_ppix_norm(im, xc+i-1, yc+j, &workc);
      i_ppix_norm(im, xc-i+1, yc+j, &workc);
      i_ppix_norm(im, xc+i-1, yc-j, &workc);
      i_ppix_norm(im, xc-i+1, yc-j, &workc);

      if (j != i-1) {
	i_ppix_norm(im, xc+j, yc+i-1, &workc);
	i_ppix_norm(im, xc-j, yc+i-1, &workc);
	i_ppix_norm(im, xc+j, yc-i+1, &workc);
	i_ppix_norm(im, xc-j, yc-i+1, &workc);
      }
    }
    t = d;
  }

  return 1;
}

/*
=item i_arc_out_aa(im, xc, yc, r, d1, d2, col)

=synopsis i_arc_out_aa(im, 50, 50, 45, 45, 125, &color);

Draw a circle arc outline centered at (x,y) with radius r, from angle
d1 degrees through angle d2 degrees, anti-aliased.

Parameters:

=over

=item *

(xc, yc) - the center of the circle

=item *

r - the radius of the circle in pixels, must be non-negative

=item *

d1, d2 - the range of angle in degrees to draw the arc through.  If
d2-d1 >= 360 a full circle is drawn.

=back

Returns non-zero on success.

=cut

Based on "Fast Anti-Aliased Circle Generation", Xiaolin Wu, Graphics
Gems.

*/

int
i_arc_out_aa(i_img *im, i_img_dim xc, i_img_dim yc, i_img_dim r, double d1, double d2, const i_color *col) {
  i_img_dim i, j;
  double t;
  i_color workc = *col;
  i_img_dim segs[2][2];
  int seg_count;
  i_img_dim sin_th;
  i_img_dim seg_d1, seg_d2;
  int seg_num;
  int orig_alpha = col->channel[3];
  i_img_dim scale = r + 1;
  i_img_dim seg1 = scale * 2;
  i_img_dim seg2 = scale * 4;
  i_img_dim seg3 = scale * 6;
  i_img_dim seg4 = scale * 8;
  dIMCTXim(im);

  im_log((aIMCTX,1,"i_arc_out_aa(im %p,centre(" i_DFp "), rad %" i_DF ", d1 %f, d2 %f, col %p)",
	  im, i_DFcp(xc, yc), i_DFc(r), d1, d2, col));

  im_clear_error(aIMCTX);
  if (r <= 0) {
    im_push_error(aIMCTX, 0, "arc: radius must be non-negative");
    return 0;
  }
  if (d1 + 360 <= d2)
    return i_circle_out_aa(im, xc, yc, r, col);

  if (d1 < 0)
    d1 += 360 * floor((-d1 + 359) / 360);
  if (d2 < 0)
    d2 += 360 * floor((-d2 + 359) / 360);
  d1 = fmod(d1, 360);
  d2 = fmod(d2, 360);
  seg_d1 = arc_seg(d1, scale);
  seg_d2 = arc_seg(d2, scale);
  if (seg_d2 < seg_d1) {
    /* split into two segments */
    segs[0][0] = 0;
    segs[0][1] = seg_d2;
    segs[1][0] = seg_d1;
    segs[1][1] = seg4;
    seg_count = 2;
  }
  else {
    segs[0][0] = seg_d1;
    segs[0][1] = seg_d2;
    seg_count = 1;
  }

  for (seg_num = 0; seg_num < seg_count; ++seg_num) {
    i_img_dim seg_start = segs[seg_num][0];
    i_img_dim seg_end = segs[seg_num][1];

    i = r;
    j = 0;
    t = 0;

    if (seg_start == 0)
      i_ppix_norm(im, xc+i, yc+j, col);
    if (seg_start <= seg1 && seg_end >= seg1)
      i_ppix_norm(im, xc+j, yc+i, col);
    if (seg_start <= seg2 && seg_end >= seg2)
      i_ppix_norm(im, xc-i, yc+j, col);
    if (seg_start <= seg3 && seg_end >= seg3)
      i_ppix_norm(im, xc+j, yc-i, col);
    
    while (i > j+1) {
      int cv, inv_cv;
      double d;
      j++;
      d = cover(r, j);
      cv = (int)(d * 255 + 0.5);
      inv_cv = 255-cv;
      if (d < t) {
	--i;
      }
      sin_th = j;
      if (inv_cv) {
	workc.channel[3] = orig_alpha * inv_cv / 255;

	if (seg_start <= sin_th && seg_end >= sin_th)
	  i_ppix_norm(im, xc+i, yc+j, &workc);
	if (seg_start <= seg2 - sin_th && seg_end >= seg2 - sin_th)
	  i_ppix_norm(im, xc-i, yc+j, &workc);
	if (seg_start <= seg4 - sin_th && seg_end >= seg4 - sin_th)
	  i_ppix_norm(im, xc+i, yc-j, &workc);
	if (seg_start <= seg2 + sin_th && seg_end >= seg2 + sin_th)
	  i_ppix_norm(im, xc-i, yc-j, &workc);
	
	if (i != j) {
	  if (seg_start <= seg1 - sin_th && seg_end >= seg1 - sin_th)
	    i_ppix_norm(im, xc+j, yc+i, &workc);
	  if (seg_start <= seg1 + sin_th && seg_end >= seg1 + sin_th)
	    i_ppix_norm(im, xc-j, yc+i, &workc);
	  if (seg_start <= seg3 + sin_th && seg_end >= seg3 + sin_th)
	    i_ppix_norm(im, xc+j, yc-i, &workc);
	  if (seg_start <= seg3 - sin_th && seg_end >= seg3 - sin_th)
	    i_ppix_norm(im, xc-j, yc-i, &workc);
	}
      }
      if (cv && i > j) {
	workc.channel[3] = orig_alpha * cv / 255;
	if (seg_start <= sin_th && seg_end >= sin_th)
	  i_ppix_norm(im, xc+i-1, yc+j, &workc);
	if (seg_start <= seg2 - sin_th && seg_end >= seg2 - sin_th)
	  i_ppix_norm(im, xc-i+1, yc+j, &workc);
	if (seg_start <= seg4 - sin_th && seg_end >= seg4 - sin_th)
	  i_ppix_norm(im, xc+i-1, yc-j, &workc);
	if (seg_start <= seg2 + sin_th && seg_end >= seg2 + sin_th)
	  i_ppix_norm(im, xc-i+1, yc-j, &workc);
	
	if (seg_start <= seg1 - sin_th && seg_end >= seg1 - sin_th)
	  i_ppix_norm(im, xc+j, yc+i-1, &workc);
	if (seg_start <= seg1 + sin_th && seg_end >= seg1 + sin_th)
	  i_ppix_norm(im, xc-j, yc+i-1, &workc);
	if (seg_start <= seg3 + sin_th && seg_end >= seg3 + sin_th)
	  i_ppix_norm(im, xc+j, yc-i+1, &workc);
	if (seg_start <= seg3 - sin_th && seg_end >= seg3 - sin_th)
	  i_ppix_norm(im, xc-j, yc-i+1, &workc);
      }
      t = d;
    }
  }

  return 1;
}

/*
=item i_box(im, x1, y1, x2, y2, color)

=category Drawing
=synopsis i_box(im, 0, 0, im->xsize-1, im->ysize-1, &color).

Outlines the box from (x1,y1) to (x2,y2) inclusive with I<color>.

=cut
*/

void
i_box(i_img *im,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2,const i_color *val) {
  i_img_dim x,y;
  dIMCTXim(im);

  im_log((aIMCTX, 1,"i_box(im* %p, p1(" i_DFp "), p2(" i_DFp "),val %p)\n",
	  im, i_DFcp(x1,y1), i_DFcp(x2,y2), val));
  for(x=x1;x<x2+1;x++) {
    i_ppix(im,x,y1,val);
    i_ppix(im,x,y2,val);
  }
  for(y=y1;y<y2+1;y++) {
    i_ppix(im,x1,y,val);
    i_ppix(im,x2,y,val);
  }
}

/*
=item i_box_filled(im, x1, y1, x2, y2, color)

=category Drawing
=synopsis i_box_filled(im, 0, 0, im->xsize-1, im->ysize-1, &color);

Fills the box from (x1,y1) to (x2,y2) inclusive with color.

=cut
*/

void
i_box_filled(i_img *im,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2, const i_color *val) {
  i_img_dim x, y, width;
  i_palidx index;
  dIMCTXim(im);

  im_log((aIMCTX,1,"i_box_filled(im* %p, p1(" i_DFp "), p2(" i_DFp "),val %p)\n",
	  im, i_DFcp(x1, y1), i_DFcp(x2,y2) ,val));

  if (x1 > x2 || y1 > y2
      || x2 < 0 || y2 < 0
      || x1 >= im->xsize || y1 > im->ysize)
    return;

  if (x1 < 0)
    x1 = 0;
  if (x2 >= im->xsize)
    x2 = im->xsize - 1;
  if (y1 < 0)
    y1 = 0;
  if (y2 >= im->ysize)
    y2 = im->ysize - 1;

  width = x2 - x1 + 1;

  if (im->type == i_palette_type
      && i_findcolor(im, val, &index)) {
    i_palidx *line = mymalloc(sizeof(i_palidx) * width);

    for (x = 0; x < width; ++x)
      line[x] = index;

    for (y = y1; y <= y2; ++y)
      i_ppal(im, x1, x2+1, y, line);

    myfree(line);
  }
  else {
    i_color *line = mymalloc(sizeof(i_color) * width);

    for (x = 0; x < width; ++x)
      line[x] = *val;

    for (y = y1; y <= y2; ++y)
      i_plin(im, x1, x2+1, y, line);

    myfree(line);
  }
}

/*
=item i_box_filledf(im, x1, y1, x2, y2, color)

=category Drawing
=synopsis i_box_filledf(im, 0, 0, im->xsize-1, im->ysize-1, &fcolor);

Fills the box from (x1,y1) to (x2,y2) inclusive with a floating point
color.

=cut
*/

int
i_box_filledf(i_img *im,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2, const i_fcolor *val) {
  i_img_dim x, y, width;
  dIMCTXim(im);

  im_log((aIMCTX, 1,"i_box_filledf(im* %p, p1(" i_DFp "), p2(" i_DFp "),val %p)\n",
	  im, i_DFcp(x1, y1), i_DFcp(x2, y2), val));

  if (x1 > x2 || y1 > y2
      || x2 < 0 || y2 < 0
      || x1 >= im->xsize || y1 > im->ysize)
    return 0;

  if (x1 < 0)
    x1 = 0;
  if (x2 >= im->xsize)
    x2 = im->xsize - 1;
  if (y1 < 0)
    y1 = 0;
  if (y2 >= im->ysize)
    y2 = im->ysize - 1;

  width = x2 - x1 + 1;

  if (im->bits <= 8) {
    i_color c;
    c.rgba.r = SampleFTo8(val->rgba.r);
    c.rgba.g = SampleFTo8(val->rgba.g);
    c.rgba.b = SampleFTo8(val->rgba.b);
    c.rgba.a = SampleFTo8(val->rgba.a);

    i_box_filled(im, x1, y1, x2, y2, &c);
  }
  else {
    i_fcolor *line = mymalloc(sizeof(i_fcolor) * width);
    
    for (x = 0; x < width; ++x)
      line[x] = *val;
    
    for (y = y1; y <= y2; ++y)
      i_plinf(im, x1, x2+1, y, line);
    
    myfree(line);
  }
  
  return 1;
}

/*
=item i_box_cfill(im, x1, y1, x2, y2, fill)

=category Drawing
=synopsis i_box_cfill(im, 0, 0, im->xsize-1, im->ysize-1, fill);

Fills the box from (x1,y1) to (x2,y2) inclusive with fill.

=cut
*/

void
i_box_cfill(i_img *im,i_img_dim x1,i_img_dim y1,i_img_dim x2,i_img_dim y2,i_fill_t *fill) {
  i_render r;
  dIMCTXim(im);

  im_log((aIMCTX,1,"i_box_cfill(im* %p, p1(" i_DFp "), p2(" i_DFp "), fill %p)\n",
	  im, i_DFcp(x1, y1), i_DFcp(x2,y2), fill));

  ++x2;
  if (x1 < 0)
    x1 = 0;
  if (y1 < 0) 
    y1 = 0;
  if (x2 > im->xsize) 
    x2 = im->xsize;
  if (y2 >= im->ysize)
    y2 = im->ysize-1;
  if (x1 >= x2 || y1 > y2)
    return;

  i_render_init(&r, im, x2-x1);
  while (y1 <= y2) {
    i_render_fill(&r, x1, y1, x2-x1, NULL, fill);
    ++y1;
  }
  i_render_done(&r);
}

/* 
=item i_line(C<im>, C<x1>, C<y1>, C<x2>, C<y2>, C<color>, C<endp>)

=category Drawing

=for stopwords Bresenham's

Draw a line to image using Bresenham's line drawing algorithm

   im    - image to draw to
   x1    - starting x coordinate
   y1    - starting x coordinate
   x2    - starting x coordinate
   y2    - starting x coordinate
   color - color to write to image
   endp  - endpoint flag (boolean)

=cut
*/

void
i_line(i_img *im, i_img_dim x1, i_img_dim y1, i_img_dim x2, i_img_dim y2, const i_color *val, int endp) {
  i_img_dim x, y;
  i_img_dim dx, dy;
  i_img_dim p;

  dx = x2 - x1;
  dy = y2 - y1;


  /* choose variable to iterate on */
  if (i_abs(dx) > i_abs(dy)) {
    i_img_dim dx2, dy2, cpy;

    /* sort by x */
    if (x1 > x2) {
      i_img_dim t;
      t = x1; x1 = x2; x2 = t;
      t = y1; y1 = y2; y2 = t;
    }
    
    dx = i_abs(dx);
    dx2 = dx*2;
    dy = y2 - y1;

    if (dy<0) {
      dy = -dy;
      cpy = -1;
    } else {
      cpy = 1;
    }
    dy2 = dy*2;
    p = dy2 - dx;

    
    y = y1;
    for(x=x1; x<x2-1; x++) {
      if (p<0) {
        p += dy2;
      } else {
        y += cpy;
        p += dy2-dx2;
      }
      i_ppix(im, x+1, y, val);
    }
  } else {
    i_img_dim dy2, dx2, cpx;

    /* sort bx y */
    if (y1 > y2) {
      i_img_dim t;
      t = x1; x1 = x2; x2 = t;
      t = y1; y1 = y2; y2 = t;
    }
    
    dy = i_abs(dy);
    dx = x2 - x1;
    dy2 = dy*2;

    if (dx<0) {
      dx = -dx;
      cpx = -1;
    } else {
      cpx = 1;
    }
    dx2 = dx*2;
    p = dx2 - dy;

    x = x1;
    
    for(y=y1; y<y2-1; y++) {
      if (p<0) {
        p  += dx2;
      } else {
        x += cpx;
        p += dx2-dy2;
      }
      i_ppix(im, x, y+1, val);
    }
  }
  if (endp) {
    i_ppix(im, x1, y1, val);
    i_ppix(im, x2, y2, val);
  } else {
    if (x1 != x2 || y1 != y2) 
      i_ppix(im, x1, y1, val);
  }
}


void
i_line_dda(i_img *im, i_img_dim x1, i_img_dim y1, i_img_dim x2, i_img_dim y2, i_color *val) {

  double dy;
  i_img_dim x;
  
  for(x=x1; x<=x2; x++) {
    dy = y1+ (x-x1)/(double)(x2-x1)*(y2-y1);
    i_ppix(im, x, (i_img_dim)(dy+0.5), val);
  }
}

/*
=item i_line_aa(C<im>, C<x1>, C<x2>, C<y1>, C<y2>, C<color>, C<endp>)

=category Drawing

Anti-alias draws a line from (x1,y1) to (x2, y2) in color.

The point (x2, y2) is drawn only if C<endp> is set.

=cut
*/

void
i_line_aa(i_img *im, i_img_dim x1, i_img_dim y1, i_img_dim x2, i_img_dim y2, const i_color *val, int endp) {
  i_img_dim x, y;
  i_img_dim dx, dy;
  i_img_dim p;

  dx = x2 - x1;
  dy = y2 - y1;

  /* choose variable to iterate on */
  if (i_abs(dx) > i_abs(dy)) {
    i_img_dim dx2, dy2, cpy;
    
    /* sort by x */
    if (x1 > x2) {
      i_img_dim t;
      t = x1; x1 = x2; x2 = t;
      t = y1; y1 = y2; y2 = t;
    }
    
    dx = i_abs(dx);
    dx2 = dx*2;
    dy = y2 - y1;

    if (dy<0) {
      dy = -dy;
      cpy = -1;
    } else {
      cpy = 1;
    }
    dy2 = dy*2;
    p = dy2 - dx2; /* this has to be like this for AA */
    
    y = y1;

    for(x=x1; x<x2-1; x++) {
      int ch;
      i_color tval;
      double t = (dy) ? -(float)(p)/(float)(dx2) : 1;
      double t1, t2;

      if (t<0) t = 0;
      t1 = 1-t;
      t2 = t;

      i_gpix(im,x+1,y,&tval);
      for(ch=0;ch<im->channels;ch++)
	tval.channel[ch]=(unsigned char)(t1*(float)tval.channel[ch]+t2*(float)val->channel[ch]);
      i_ppix(im,x+1,y,&tval);

      i_gpix(im,x+1,y+cpy,&tval);
      for(ch=0;ch<im->channels;ch++)
	tval.channel[ch]=(unsigned char)(t2*(float)tval.channel[ch]+t1*(float)val->channel[ch]);
      i_ppix(im,x+1,y+cpy,&tval);

      if (p<0) {
        p += dy2;
      } else {
        y += cpy;
        p += dy2-dx2;
      }
    }
  } else {
    i_img_dim dy2, dx2, cpx;

    /* sort bx y */
    if (y1 > y2) {
      i_img_dim t;
      t = x1; x1 = x2; x2 = t;
      t = y1; y1 = y2; y2 = t;
    }
    
    dy = i_abs(dy);
    dx = x2 - x1;
    dy2 = dy*2;

    if (dx<0) {
      dx = -dx;
      cpx = -1;
    } else {
      cpx = 1;
    }
    dx2 = dx*2;
    p = dx2 - dy2; /* this has to be like this for AA */

    x = x1;
    
    for(y=y1; y<y2-1; y++) {
      int ch;
      i_color tval;
      double t = (dx) ? -(double)(p)/(double)(dy2) : 1;
      double t1, t2;
      
      if (t<0) t = 0;
      t1 = 1-t;
      t2 = t;

      i_gpix(im,x,y+1,&tval);
      for(ch=0;ch<im->channels;ch++)
	tval.channel[ch]=(unsigned char)(t1*(double)tval.channel[ch]+t2*(double)val->channel[ch]);
      i_ppix(im,x,y+1,&tval);

      i_gpix(im,x+cpx,y+1,&tval);
      for(ch=0;ch<im->channels;ch++)
	tval.channel[ch]=(unsigned char)(t2*(double)tval.channel[ch]+t1*(double)val->channel[ch]);
      i_ppix(im,x+cpx,y+1,&tval);

      if (p<0) {
        p  += dx2;
      } else {
        x += cpx;
        p += dx2-dy2;
      }
    }
  }


  if (endp) {
    i_ppix(im, x1, y1, val);
    i_ppix(im, x2, y2, val);
  } else {
    if (x1 != x2 || y1 != y2) 
      i_ppix(im, x1, y1, val);
  }
}



static double
perm(i_img_dim n,i_img_dim k) {
  double r;
  i_img_dim i;
  r=1;
  for(i=k+1;i<=n;i++) r*=i;
  for(i=1;i<=(n-k);i++) r/=i;
  return r;
}


/* Note in calculating t^k*(1-t)^(n-k) 
   we can start by using t^0=1 so this simplifies to
   t^0*(1-t)^n - we want to multiply that with t/(1-t) each iteration
   to get a new level - this may lead to errors who knows lets test it */

void
i_bezier_multi(i_img *im,int l,const double *x,const double *y, const i_color *val) {
  double *bzcoef;
  double t,cx,cy;
  int k,i;
  i_img_dim lx = 0,ly = 0;
  int n=l-1;
  double itr,ccoef;

  /* this is the same size as the x and y arrays, so shouldn't overflow */
  bzcoef=mymalloc(sizeof(double)*l); /* checked 5jul05 tonyc */
  for(k=0;k<l;k++) bzcoef[k]=perm(n,k);
  ICL_info(val);


  /*  for(k=0;k<l;k++) printf("bzcoef: %d -> %f\n",k,bzcoef[k]); */
  i=0;
  for(t=0;t<=1;t+=0.005) {
    cx=cy=0;
    itr=t/(1-t);
    ccoef=pow(1-t,n);
    for(k=0;k<l;k++) {
      /*      cx+=bzcoef[k]*x[k]*pow(t,k)*pow(1-t,n-k); 
	      cy+=bzcoef[k]*y[k]*pow(t,k)*pow(1-t,n-k);*/

      cx+=bzcoef[k]*x[k]*ccoef;
      cy+=bzcoef[k]*y[k]*ccoef;
      ccoef*=itr;
    }
    /*    printf("%f -> (%d,%d)\n",t,(int)(0.5+cx),(int)(0.5+cy)); */
    if (i++) { 
      i_line_aa(im,lx,ly,(i_img_dim)(0.5+cx),(i_img_dim)(0.5+cy),val, 1);
    }
      /*     i_ppix(im,(i_img_dim)(0.5+cx),(i_img_dim)(0.5+cy),val); */
    lx=(i_img_dim)(0.5+cx);
    ly=(i_img_dim)(0.5+cy);
  }
  ICL_info(val);
  myfree(bzcoef);
}

/* Flood fill 

   REF: Graphics Gems I. page 282+

*/

/* This should be moved into a seperate file? */

/* This is the truncation used:
   
   a double is multiplied by 16 and then truncated.
   This means that 0 -> 0
   So a triangle of (0,0) (10,10) (10,0) Will look like it's
   not filling the (10,10) point nor the (10,0)-(10,10)  line segment

*/


/* Flood fill algorithm - based on the Ken Fishkins (pixar) gem in 
   graphics gems I */

/*
struct stc {
  i_img_dim mylx,myrx; 
  i_img_dim dadlx,dadrx;
  i_img_dim myy;
  int mydirection;
};

Not used code???
*/


struct stack_element {
  i_img_dim myLx,myRx;
  i_img_dim dadLx,dadRx;
  i_img_dim myY;
  int myDirection;
};


/* create the link data to put push onto the stack */

static
struct stack_element*
crdata(i_img_dim left,i_img_dim right,i_img_dim dadl,i_img_dim dadr,i_img_dim y, int dir) {
  struct stack_element *ste;
  ste              = mymalloc(sizeof(struct stack_element)); /* checked 5jul05 tonyc */
  ste->myLx        = left;
  ste->myRx        = right;
  ste->dadLx       = dadl;
  ste->dadRx       = dadr;
  ste->myY         = y;
  ste->myDirection = dir;
  return ste;
}

/* i_ccomp compares two colors and gives true if they are the same */

typedef int (*ff_cmpfunc)(i_color const *c1, i_color const *c2, int channels);

static int
i_ccomp_normal(i_color const *val1, i_color const *val2, int ch) {
  int i;
  for(i = 0; i < ch; i++) 
    if (val1->channel[i] !=val2->channel[i])
      return 0;
  return 1;
}

static int
i_ccomp_border(i_color const *val1, i_color const *val2, int ch) {
  int i;
  for(i = 0; i < ch; i++) 
    if (val1->channel[i] !=val2->channel[i])
      return 1;
  return 0;
}

static int
i_lspan(i_img *im, i_img_dim seedx, i_img_dim seedy, i_color const *val, ff_cmpfunc cmpfunc) {
  i_color cval;
  while(1) {
    if (seedx-1 < 0) break;
    i_gpix(im,seedx-1,seedy,&cval);
    if (!cmpfunc(val,&cval,im->channels)) 
      break;
    seedx--;
  }
  return seedx;
}

static int
i_rspan(i_img *im, i_img_dim seedx, i_img_dim seedy, i_color const *val, ff_cmpfunc cmpfunc) {
  i_color cval;
  while(1) {
    if (seedx+1 > im->xsize-1) break;
    i_gpix(im,seedx+1,seedy,&cval);
    if (!cmpfunc(val,&cval,im->channels)) break;
    seedx++;
  }
  return seedx;
}

#ifdef DEBUG_FLOOD_FILL

#define ST_PUSH_NOTE(left, right, dadl, dadr, y, dir) \
  fprintf(stderr, "push(left %" i_DF ", right %" i_DF ", dadleft %" i_DF  ", dadright %" i_DF ", y %" i_DF ", dir %d, line %d)\n", \
	  i_DFc(left), i_DFc(right), i_DFc(dadl), i_DFc(dadr), i_DFc(y), (dir), __LINE__)

#define ST_POP_NOTE(left, right, dadl, dadr, y, dir) \
  fprintf(stderr, "popped(left %" i_DF ", right %" i_DF ", dadleft %" i_DF  ", dadright %" i_DF ", y %" i_DF ", dir %d, line %d)\n", \
	  i_DFc(left), i_DFc(right), i_DFc(dadl), i_DFc(dadr), i_DFc(y), (dir), __LINE__)

#define ST_STACK_NOTE(dadl, dadr, left, right, y, dir)			\
  fprintf(stderr, "stack(left %" i_DF ", right %" i_DF ", dadleft %" i_DF  ", dadright %" i_DF ", y %" i_DF ", dir %d, line %d)\n", \
	  i_DFc(left), i_DFc(right), i_DFc(dadl), i_DFc(dadr), i_DFc(y), (dir), __LINE__)

#else

#define ST_PUSH_NOTE(left, right, dadl, dadr, y, dir)

#define ST_POP_NOTE(left, right, dadl, dadr, y, dir)

#define ST_STACK_NOTE(dadl, dadr, left, right, y, dir)

#endif


/* Macro to create a link and push on to the list */

#define ST_PUSH(left,right,dadl,dadr,y,dir) do {                 \
  struct stack_element *s = crdata(left,right,dadl,dadr,y,dir);  \
  ST_PUSH_NOTE(left, right, dadl, dadr, y, dir);		 \
  llist_push(st,&s);                                             \
} while (0)

/* pops the shadow on TOS into local variables lx,rx,y,direction,dadLx and dadRx */
/* No overflow check! */
 
#define ST_POP() do {         \
  struct stack_element *s;    \
  llist_pop(st,&s);           \
  lx        = s->myLx;        \
  rx        = s->myRx;        \
  dadLx     = s->dadLx;       \
  dadRx     = s->dadRx;       \
  y         = s->myY;         \
  direction = s->myDirection; \
  ST_POP_NOTE(lx, rx, dadLx, dadRx, y, direction);	\
  myfree(s);                  \
} while (0)

#define ST_STACK(dir,dadLx,dadRx,lx,rx,y) do {                    \
  i_img_dim pushrx = rx+1;                                              \
  i_img_dim pushlx = lx-1;                                              \
  ST_STACK_NOTE(lx, rx, dadLx, dadRx, y, dir);		 \
  ST_PUSH(lx,rx,pushlx,pushrx,y+dir,dir);                         \
  if (rx > dadRx)                                                 \
    ST_PUSH(dadRx+1,rx,pushlx,pushrx,y-dir,-dir);                 \
  if (lx < dadLx)						\
    ST_PUSH(lx,dadLx-1,pushlx,pushrx,y-dir,-dir);   \
} while (0)

#define SET(x,y) btm_set(btm,x,y)

/* INSIDE returns true if pixel is correct color and we haven't set it before. */
#define INSIDE(x,y, seed) \
  (assert((x) >= 0 && (x) < (im)->xsize && (y) >= 0 && (y) < (im)->ysize), \
   (!btm_test(btm,x,y) && \
     ( i_gpix(im,x,y,&cval),cmpfunc(seed,&cval,channels)  ) ))

/* The function that does all the real work */

static struct i_bitmap *
i_flood_fill_low(i_img *im,i_img_dim seedx,i_img_dim seedy,
                 i_img_dim *bxminp, i_img_dim *bxmaxp, i_img_dim *byminp, i_img_dim *bymaxp,
		 i_color const *seed, ff_cmpfunc cmpfunc) {
  i_img_dim ltx, rtx;
  i_img_dim tx = 0;

  i_img_dim bxmin = seedx;
  i_img_dim bxmax = seedx;
  i_img_dim bymin = seedy;
  i_img_dim bymax = seedy;

  struct llist *st;
  struct i_bitmap *btm;

  int channels;
  i_img_dim xsize,ysize;
  i_color cval; /* used by the INSIDE() macro */

  channels = im->channels;
  xsize    = im->xsize;
  ysize    = im->ysize;

  btm = btm_new(xsize, ysize);
  st  = llist_new(100, sizeof(struct stack_element*));

  /* Find the starting span and fill it */
  ltx = i_lspan(im, seedx, seedy, seed, cmpfunc);
  rtx = i_rspan(im, seedx, seedy, seed, cmpfunc);
  for(tx=ltx; tx<=rtx; tx++) SET(tx, seedy);
  bxmin = ltx;
  bxmax = rtx;

  ST_PUSH(ltx, rtx, ltx, rtx, seedy+1,  1);
  ST_PUSH(ltx, rtx, ltx, rtx, seedy-1, -1);

  while(st->count) {
    /* Stack variables */
    i_img_dim lx,rx;
    i_img_dim dadLx,dadRx;
    i_img_dim y;
    int direction;

    i_img_dim x;
    int wasIn=0;

    ST_POP(); /* sets lx, rx, dadLx, dadRx, y, direction */


    if (y<0 || y>ysize-1) continue;
    if (bymin > y) bymin=y; /* in the worst case an extra line */
    if (bymax < y) bymax=y; 


    x = lx+1;
    if ( lx >= 0 && (wasIn = INSIDE(lx, y, seed)) ) {
      SET(lx, y);
      lx--;
      while(lx >= 0 && INSIDE(lx, y, seed)) {
	SET(lx,y);
	lx--;
      }
      /* lx should point at the left-most INSIDE() pixel */
      ++lx;
    }

    if (bxmin > lx) bxmin = lx;
    while(x <= xsize-1) {
      /*  printf("x=%d\n",x); */
      if (wasIn) {
	
	if (INSIDE(x, y, seed)) {
	  /* case 1: was inside, am still inside */
	  SET(x,y);
	} else {
	  /* case 2: was inside, am no longer inside: just found the
	     right edge of a span */
	  ST_STACK(direction, dadLx, dadRx, lx, (x-1), y);

	  if (bxmax < x) bxmax = x;
	  wasIn=0;
	}
      } else {
	if (x > rx) goto EXT;
	if (INSIDE(x, y, seed)) {
	  SET(x, y);
	  /* case 3: Wasn't inside, am now: just found the start of a new run */
	  wasIn = 1;
	    lx = x;
	} else {
	  /* case 4: Wasn't inside, still isn't */
	}
      }
      x++;
    }
  EXT: /* out of loop */
    if (wasIn) {
      /* hit an edge of the frame buffer while inside a run */
      ST_STACK(direction, dadLx, dadRx, lx, (x-1), y);
      if (bxmax < x) bxmax = x;
    }
  }

  llist_destroy(st);

  *bxminp = bxmin;
  *bxmaxp = bxmax;
  *byminp = bymin;
  *bymaxp = bymax;

  return btm;
}

/*
=item i_flood_fill(C<im>, C<seedx>, C<seedy>, C<color>)

=category Drawing
=synopsis i_flood_fill(im, 50, 50, &color);

Flood fills the 4-connected region starting from the point (C<seedx>,
C<seedy>) with I<color>.

Returns false if (C<seedx>, C<seedy>) are outside the image.

=cut
*/

undef_int
i_flood_fill(i_img *im, i_img_dim seedx, i_img_dim seedy, const i_color *dcol) {
  i_img_dim bxmin, bxmax, bymin, bymax;
  struct i_bitmap *btm;
  i_img_dim x, y;
  i_color val;
  dIMCTXim(im);

  im_log((aIMCTX, 1, "i_flood_fill(im %p, seed(" i_DFp "), col %p)",
          im, i_DFcp(seedx, seedy), dcol));

  im_clear_error(aIMCTX);
  if (seedx < 0 || seedx >= im->xsize ||
      seedy < 0 || seedy >= im->ysize) {
    im_push_error(aIMCTX, 0, "i_flood_cfill: Seed pixel outside of image");
    return 0;
  }

  /* Get the reference color */
  i_gpix(im, seedx, seedy, &val);

  btm = i_flood_fill_low(im, seedx, seedy, &bxmin, &bxmax, &bymin, &bymax,
			 &val, i_ccomp_normal);

  for(y=bymin;y<=bymax;y++)
    for(x=bxmin;x<=bxmax;x++)
      if (btm_test(btm,x,y)) 
	i_ppix(im,x,y,dcol);
  btm_destroy(btm);
  return 1;
}

/*
=item i_flood_cfill(C<im>, C<seedx>, C<seedy>, C<fill>)

=category Drawing
=synopsis i_flood_cfill(im, 50, 50, fill);

Flood fills the 4-connected region starting from the point (C<seedx>,
C<seedy>) with C<fill>.

Returns false if (C<seedx>, C<seedy>) are outside the image.

=cut
*/

undef_int
i_flood_cfill(i_img *im, i_img_dim seedx, i_img_dim seedy, i_fill_t *fill) {
  i_img_dim bxmin, bxmax, bymin, bymax;
  struct i_bitmap *btm;
  i_color val;
  dIMCTXim(im);

  im_log((aIMCTX, 1, "i_flood_cfill(im %p, seed(" i_DFp "), fill %p)",
          im, i_DFcp(seedx, seedy), fill));

  im_clear_error(aIMCTX);
  
  if (seedx < 0 || seedx >= im->xsize ||
      seedy < 0 || seedy >= im->ysize) {
    im_push_error(aIMCTX, 0, "i_flood_cfill: Seed pixel outside of image");
    return 0;
  }

  /* Get the reference color */
  i_gpix(im, seedx, seedy, &val);

  btm = i_flood_fill_low(im, seedx, seedy, &bxmin, &bxmax, &bymin, &bymax,
			 &val, i_ccomp_normal);

  cfill_from_btm(im, fill, btm, bxmin, bxmax, bymin, bymax);

  btm_destroy(btm);
  return 1;
}

/*
=item i_flood_fill_border(C<im>, C<seedx>, C<seedy>, C<color>, C<border>)

=category Drawing
=synopsis i_flood_fill_border(im, 50, 50, &color, &border);

Flood fills the 4-connected region starting from the point (C<seedx>,
C<seedy>) with C<color>, fill stops when the fill reaches a pixels
with color C<border>.

Returns false if (C<seedx>, C<seedy>) are outside the image.

=cut
*/

undef_int
i_flood_fill_border(i_img *im, i_img_dim seedx, i_img_dim seedy, const i_color *dcol,
		    const i_color *border) {
  i_img_dim bxmin, bxmax, bymin, bymax;
  struct i_bitmap *btm;
  i_img_dim x, y;
  dIMCTXim(im);

  im_log((aIMCTX, 1, "i_flood_cfill(im %p, seed(" i_DFp "), dcol %p, border %p)",
          im, i_DFcp(seedx, seedy), dcol, border));

  im_clear_error(aIMCTX);
  if (seedx < 0 || seedx >= im->xsize ||
      seedy < 0 || seedy >= im->ysize) {
    im_push_error(aIMCTX, 0, "i_flood_cfill: Seed pixel outside of image");
    return 0;
  }

  btm = i_flood_fill_low(im, seedx, seedy, &bxmin, &bxmax, &bymin, &bymax,
			 border, i_ccomp_border);

  for(y=bymin;y<=bymax;y++)
    for(x=bxmin;x<=bxmax;x++)
      if (btm_test(btm,x,y)) 
	i_ppix(im,x,y,dcol);
  btm_destroy(btm);
  return 1;
}

/*
=item i_flood_cfill_border(C<im>, C<seedx>, C<seedy>, C<fill>, C<border>)

=category Drawing
=synopsis i_flood_cfill_border(im, 50, 50, fill, border);

Flood fills the 4-connected region starting from the point (C<seedx>,
C<seedy>) with C<fill>, the fill stops when it reaches pixels of color
C<border>.

Returns false if (C<seedx>, C<seedy>) are outside the image.

=cut
*/

undef_int
i_flood_cfill_border(i_img *im, i_img_dim seedx, i_img_dim seedy, i_fill_t *fill,
		     const i_color *border) {
  i_img_dim bxmin, bxmax, bymin, bymax;
  struct i_bitmap *btm;
  dIMCTXim(im);

  im_log((aIMCTX, 1, "i_flood_cfill_border(im %p, seed(" i_DFp "), fill %p, border %p)",
          im, i_DFcp(seedx, seedy), fill, border));

  im_clear_error(aIMCTX);
  
  if (seedx < 0 || seedx >= im->xsize ||
      seedy < 0 || seedy >= im->ysize) {
    im_push_error(aIMCTX, 0, "i_flood_cfill_border: Seed pixel outside of image");
    return 0;
  }

  btm = i_flood_fill_low(im, seedx, seedy, &bxmin, &bxmax, &bymin, &bymax,
			 border, i_ccomp_border);

  cfill_from_btm(im, fill, btm, bxmin, bxmax, bymin, bymax);

  btm_destroy(btm);

  return 1;
}

static void
cfill_from_btm(i_img *im, i_fill_t *fill, struct i_bitmap *btm, 
	       i_img_dim bxmin, i_img_dim bxmax, i_img_dim bymin, i_img_dim bymax) {
  i_img_dim x, y;
  i_img_dim start;

  i_render r;

  i_render_init(&r, im, bxmax - bxmin + 1);

  for(y=bymin; y<=bymax; y++) {
    x = bxmin;
    while (x <= bxmax) {
      while (x <= bxmax && !btm_test(btm, x, y)) {
	++x;
      }
      if (btm_test(btm, x, y)) {
	start = x;
	while (x <= bxmax && btm_test(btm, x, y)) {
	  ++x;
	}
	i_render_fill(&r, start, y, x-start, NULL, fill);
      }
    }
  }
  i_render_done(&r);
}

/*
=back

=cut
*/