Sisyphus >
Math-MPFR-3.21 >
Math::MPFR

Module Version: 3.21
Math::MPFR - perl interface to the MPFR (floating point) library.

This module needs the MPFR and GMP C libraries. (Install GMP first as it is a pre-requisite for MPFR.) The GMP library is available from http://gmplib.org The MPFR library is available from http://www.mpfr.org/

A bigfloat module utilising the MPFR library. Basically this module simply wraps the 'mpfr' floating point functions provided by that library. Operator overloading is also available. The following documentation heavily plagiarises the mpfr documentation. See also the Math::MPFR test suite for some examples of usage.

use Math::MPFR qw(:mpfr); # '@' can be used to separate mantissa from exponent. For bases # that are <= 10, 'e' or 'E' can also be used. # Use single quotes for string assignment if you're using '@' as # the separator. If you must use double quotes, you'll have to # escape the '@'. my $str = '.123542@2'; # mantissa = (.)123452 # exponent = 2 #Alternatively: # my $str = ".123542\@2"; # or: # my $str = '12.3542'; # or: # my $str = '1.23542e1'; # or: # my $str = '1.23542E1'; my $base = 10; my $rnd = MPFR_RNDZ; # See 'ROUNDING MODE' # Create an Math::MPFR object that holds an initial # value of $str (in base $base) and has the default # precision. $bn1 is the number. $nok will either be 0 # indicating that the string was a valid number string, or # -1, indicating that the string contained at least one # invalid numeric character. # See 'COMBINED INITIALISATION AND ASSIGNMENT', below. my ($bn1, $nok) = Rmpfr_init_set_str($str, $base, $rnd); # Or use the new() constructor - also documented below # in 'COMBINED INITIALISATION AND ASSIGNMENT'. # my $bn1 = Math::MPFR->new($str); # Create another Math::MPFR object with precision # of 100 bits and an initial value of NaN. my $bn2 = Rmpfr_init2(100); # Assign the value -2314.451 to $bn1. Rmpfr_set_d($bn2, -2314.451, MPFR_RNDN); # Create another Math::MPFR object that holds # an initial value of NaN and has the default precision. my $bn3 = Rmpfr_init(); # Or using instead the new() constructor: # my $bn3 = Math::MPFR->new(); # Perform some operations ... see 'FUNCTIONS' below. # see 'OPERATOR OVERLOADING' below for docs re # operator overloading . . # print out the value held by $bn1 (in octal): print Rmpfr_get_str($bn1, 8, 0, $rnd), "\n"; # print out the value held by $bn1 (in decimal): print Rmpfr_get_str($bn1, 10, 0, $rnd), "\n"; # or just make use of overloading : print $bn1, "\n"; # is base 10, and uses 'e' rather than '@'. # print out the value held by $bn1 (in base 16) using the # 'TRmpfr_out_str' function. (No newline is printed - unless # it's supplied as the optional fifth arg. See the # 'TRmpfr_out_str' documentation below.) TRmpfr_out_str(*stdout, 16, 0, $bn1, $rnd);

One of 4 values: GMP_RNDN (numeric value = 0): Round to nearest. GMP_RNDZ (numeric value = 1): Round towards zero. GMP_RNDU (numeric value = 2): Round towards +infinity. GMP_RNDD (numeric value = 3): Round towards -infinity. With the release of mpfr-3.0.0, the same rounding values are renamed to: MPFR_RNDN (numeric value = 0): Round to nearest. MPFR_RNDZ (numeric value = 1): Round towards zero. MPFR_RNDU (numeric value = 2): Round towards +infinity. MPFR_RNDD (numeric value = 3): Round towards -infinity. You can use either rendition with Math-MPFR-3.0 or later. The mpfr-3.0.0 library also provides: MPFR_RNDA (numeric value = 4): Round away from zero. It, too, can be used with Math-MPFR-3.0 or later, but will cause a fatal error iff the mpfr library against which Math::MPFR is built is earlier than version 3.0.0. The `round to nearest' mode works as in the IEEE P754 standard: in case the number to be rounded lies exactly in the middle of two representable numbers, it is rounded to the one with the least significant bit set to zero. For example, the number 5, which is represented by (101) in binary, is rounded to (100)=4 with a precision of two bits, and not to (110)=6. This rule avoids the "drift" phenomenon mentioned by Knuth in volume 2 of The Art of Computer Programming (section 4.2.2, pages 221-222). Most Math::MPFR functions take as first argument the destination variable, as second and following arguments the input variables, as last argument a rounding mode, and have a return value of type `int'. If this value is zero, it means that the value stored in the destination variable is the exact result of the corresponding mathematical function. If the returned value is positive (resp. negative), it means the value stored in the destination variable is greater (resp. lower) than the exact result. For example with the `GMP_RNDU' rounding mode, the returned value is usually positive, except when the result is exact, in which case it is zero. In the case of an infinite result, it is considered as inexact when it was obtained by overflow, and exact otherwise. A NaN result (Not-a-Number) always corresponds to an inexact return value.

Objects are created with new() or with the Rmpfr_init* functions. All of these functions return an object that has been blessed into the package Math::MPFR. They will therefore be automatically cleaned up by the DESTROY() function whenever they go out of scope. For each Rmpfr_init* function there is a corresponding function called Rmpfr_init*_nobless which returns an unblessed object. If you create Math::MPFR objects using the '_nobless' versions, it will then be up to you to clean up the memory associated with these objects by calling Rmpfr_clear($op) for each object, or Rmpfr_clears($op1, $op2, ....). Alternatively such objects will be cleaned up when the script ends. I don't know why you would want to create unblessed objects. The point is that you can if you want to. The test suite does no testing of unblessed objects ... beware of bugs if you go down that path.

Some of the Math::MPFR functions below take as arguments one or more of the GMP types mpz (integer), mpq (rational) and mpf (floating point). (Such functions are marked as taking mpz/mpq/mpf arguments.) For these functions to work you need to have loaded either: 1) Math::GMP from CPAN. (This module provides access to mpz objects only - NOT mpf and mpq objects.) AND/OR 2) Math::GMPz (for mpz types), Math::GMPq (for mpq types) and Math::GMPf (for mpf types). You may also be able to use objects from the GMP module that ships with the GMP sources. I get occasional segfaults when I try to do that, so I've stopped recommending it - and don't support the practice.

These next 3 functions are demonstrated above: $rop = Rmpfr_init(); $rop = Rmpfr_init2($p); $str = Rmpfr_get_str($op, $base, $digits, $rnd); # 1 < $base < 37 The third argument to Rmpfr_get_str() specifies the number of digits required to be output in the mantissa. (Trailing zeroes are removed.) If $digits is 0, the number of digits of the mantissa is chosen large enough so that re-reading the printed value with the same precision, assuming both output and input use rounding to nearest, will recover the original value of $op. The following functions are simply wrappers around an mpfr function of the same name. eg. Rmpfr_swap() is a wrapper around mpfr_swap(). "$rop", "$op1", "$op2", etc. are Math::MPFR objects - the return value of one of the Rmpfr_init* functions. They are in fact references to mpfr structures. The "$op" variables are the operands and "$rop" is the variable that stores the result of the operation. Generally, $rop, $op1, $op2, etc. can be the same perl variable referencing the same mpfr structure, though often they will be distinct perl variables referencing distinct mpfr structures. Eg something like Rmpfr_add($r1, $r1, $r1, $rnd), where $r1 *is* the same reference to the same mpfr structure, would add $r1 to itself and store the result in $r1. Alternatively, you could (courtesy of operator overloading) simply code it as $r1 += $r1. Otoh, Rmpfr_add($r1, $r2, $r3, $rnd), where each of the arguments is a different reference to a different mpfr structure would add $r2 to $r3 and store the result in $r1. Alternatively it could be coded as $r1 = $r2 + $r3. "$ui" means any integer that will fit into a C 'unsigned long int', "$si" means any integer that will fit into a C 'signed long int'. "$sj" means any integer that will fit into a C 'intmax_t'. Don't use any of these functions unless your perl was compiled with 64 bit support. "$double" is a C double and "$float" is a C float ... but both will be represented in Perl as an NV. "$bool" means a value (usually a 'signed long int') in which the only interest is whether it evaluates as false or true. "$str" simply means a string of symbols that represent a number, eg '1234567890987654321234567@7' which might be a base 10 number, or 'zsa34760sdfgq123r5@11' which would have to represent at least a base 36 number (because "z" is a valid digit only in bases 36 and above). Valid bases for MPFR numbers are 0 and 2 to 36 (2 to 62 if Math::MPFR has been built against mpfr-3.0.0 or later). "$rnd" is simply one of the 4 rounding mode values (discussed above). "$p" is the (signed int) value for precision. ############## ROUNDING MODES Rmpfr_set_default_rounding_mode($rnd); Sets the default rounding mode to $rnd. The default rounding mode is to nearest initially (GMP_RNDN). The default rounding mode is the rounding mode that is used in overloaded operations. $si = Rmpfr_get_default_rounding_mode(); Returns the numeric value (0, 1, 2 or 3) of the current default rounding mode. This will initially be 0. $si = Rmpfr_prec_round($rop, $p, $rnd); Rounds $rop according to $rnd with precision $p, which may be different from that of $rop. If $p is greater or equal to the precision of $rop, then new space is allocated for the mantissa, and it is filled with zeroes. Otherwise, the mantissa is rounded to precision $p with the given direction. In both cases, the precision of $rop is changed to $p. The returned value is zero when the result is exact, positive when it is greater than the original value of $rop, and negative when it is smaller. The precision $p can be any integer between RMPFR_PREC_MIN and RMPFR_PREC_MAX. ########## EXCEPTIONS $si = Rmpfr_get_emin(); $si = Rmpfr_get_emax(); Return the (current) smallest and largest exponents allowed for a floating-point variable. $si = Rmpfr_get_emin_min(); $si = Rmpfr_get_emin_max(); $si = Rmpfr_get_emax_min(); $si = Rmpfr_get_emax_max(); Return the minimum and maximum of the smallest and largest exponents allowed for `mpfr_set_emin' and `mpfr_set_emax'. These values are implementation dependent $bool = Rmpfr_set_emin($si); $bool = Rmpfr_set_emax($si); Set the smallest and largest exponents allowed for a floating-point variable. Return a non-zero value when $si is not in the range of exponents accepted by the implementation (in that case the smallest or largest exponent is not changed), and zero otherwise. If the user changes the exponent range, it is her/his responsibility to check that all current floating-point variables are in the new allowed range (for example using `Rmpfr_check_range', otherwise the subsequent behaviour will be undefined, in the sense of the ISO C standard. $si2 = Rmpfr_check_range($op, $si1, $rnd); This function has changed from earlier implementations. It now forces $op to be in the current range of acceptable values, $si1 the current ternary value: negative if $op is smaller than the exact value, positive if $op is larger than the exact value and zero if $op is exact (before the call). It generates an underflow or an overflow if the exponent of $op is outside the current allowed range; the value of $si1 may be used to avoid a double rounding. This function returns zero if the rounded result is equal to the exact one, a positive value if the rounded result is larger than the exact one, a negative value if the rounded result is smaller than the exact one. Note that unlike most functions, the result is compared to the exact one, not the input value $op, i.e. the ternary value is propagated. Note: If $op is an infinity and $si1 is different from zero (i.e., if the rounded result is an inexact infinity), then the overflow flag is set. Rmpfr_set_underflow(); Rmpfr_set_overflow(); Rmpfr_set_nanflag(); Rmpfr_set_inexflag(); Rmpfr_set_erangeflag(); Rmpfr_set_divby0(); # mpfr-3.1.0 and later only Rmpfr_clear_underflow(); Rmpfr_clear_overflow(); Rmpfr_clear_nanflag(); Rmpfr_clear_inexflag(); Rmpfr_clear_erangeflag(); Rmpfr_clear_divby0(); # mpfr-3.1.0 and later only Set/clear the underflow, overflow, invalid, inexact, erange and divide-by-zero flags. Rmpfr_clear_flags(); Clear all global flags (underflow, overflow, inexact, invalid, erange and divide-by-zero). $bool = Rmpfr_underflow_p(); $bool = Rmpfr_overflow_p(); $bool = Rmpfr_nanflag_p(); $bool = Rmpfr_inexflag_p(); $bool = Rmpfr_erangeflag_p(); $bool = Rmpfr_divby0_p(); # mpfr-3.1.0 and later only Return the corresponding (underflow, overflow, invalid, inexact, erange, divide-by-zero) flag, which is non-zero iff the flag is set. $si = Rmpfr_subnormalize ($op, $si, $rnd); See the MPFR documentation for mpfr_subnormalize(). ############## INITIALIZATION A variable should be initialized once only. First read the section 'MEMORY MANAGEMENT' (above). Rmpfr_set_default_prec($p); Set the default precision to be *exactly* $p bits. The precision of a variable means the number of bits used to store its mantissa. All subsequent calls to `mpfr_init' will use this precision, but previously initialized variables are unaffected. This default precision is set to 53 bits initially. The precision can be any integer between RMPFR_PREC_MIN and RMPFR_PREC_MAX. $ui = Rmpfr_get_default_prec(); Returns the default MPFR precision in bits. $rop = Math::MPFR->new(); $rop = Math::MPFR::new(); $rop = new Math::MPFR(); $rop = Rmpfr_init(); $rop = Rmpfr_init_nobless(); Initialize $rop, and set its value to NaN. The precision of $rop is the default precision, which can be changed by a call to `Rmpfr_set_default_prec'. $rop = Rmpfr_init2($p); $rop = Rmpfr_init2_nobless($p); Initialize $rop, set its precision to be *exactly* $p bits, and set its value to NaN. To change the precision of a variable which has already been initialized, use `Rmpfr_set_prec' instead. The precision $p can be any integer between RMPFR_PREC_MIN and RMPFR_PREC_MAX. @rops = Rmpfr_inits($how_many); @rops = Rmpfr_inits_nobless($how_many); Returns an array of $how_many Math::MPFR objects - initialized, with a value of NaN, and with default precision. (These functions do not wrap mpfr_inits.) @rops = Rmpfr_inits2($p, $how_many); @rops = Rmpfr_inits2_nobless($p, $how_many); Returns an array of $how_many Math::MPFR objects - initialized, with a value of NaN, and with precision of $p. (These functions do not wrap mpfr_inits2.) Rmpfr_set_prec($op, $p); Reset the precision of $op to be *exactly* $p bits. The previous value stored in $op is lost. The precision $p can be any integer between RMPFR_PREC_MIN and RMPFR_PREC_MAX. If you want to keep the previous value stored in $op, use 'Rmpfr_prec_round' instead. $si = Rmpfr_get_prec($op); Return the precision actually used for assignments of $op, i.e. the number of bits used to store its mantissa. Rmpfr_set_prec_raw($rop, $p); Reset the precision of $rop to be *exactly* $p bits. The only difference with `mpfr_set_prec' is that $p is assumed to be small enough so that the mantissa fits into the current allocated memory space for $rop. Otherwise an error will occur. $min_prec = Rmpfr_min_prec($op); (This function is implemented only when Math::MPFR is built against mpfr-3.0.0 or later. The mpfr_min_prec function was not present in earlier versions of mpfr.) $min_prec is set to the minimal number of bits required to store the significand of $op, and 0 for special values, including 0. (Warning: the returned value can be less than RMPFR_PREC_MIN.) $minimum_precision = RMPFR_PREC_MIN; $maximum_precision = RMPFR_PREC_MAX; Returns the minimum/maximum precision for Math::MPFR objects allowed by the mpfr library being used. ########## ASSIGNMENT $si = Rmpfr_set($rop, $op, $rnd); $si = Rmpfr_set_ui($rop, $ui, $rnd); $si = Rmpfr_set_si($rop, $si, $rnd); $si = Rmpfr_set_sj($rop, $sj, $rnd); # 64 bit $si = Rmpfr_set_uj($rop, $uj, $rnd); # 64 bit $si = Rmpfr_set_d($rop, $double, $rnd); $si = Rmpfr_set_ld($rop, $ld, $rnd); # long double $si = Rmpfr_set_LD($rop, $LD, $rnd); # $LD is a Math::LongDouble object $si = Rmpfr_set_z($rop, $z, $rnd); # $z is a mpz object. $si = Rmpfr_set_q($rop, $q, $rnd); # $q is a mpq object. $si = Rmpfr_set_f($rop, $f, $rnd); # $f is a mpf object. $si = Rmpfr_set_flt($rop, $float, $rnd); # mpfr-3.0.0 and later only $si = Rmpfr_set_decimal64($rop, $d64, $rnd) # mpfr-3.1.1 and later # only. $d64 is a # Math::Decimal64 object $si = Rmpfr_set_float128($rop, $f128, $rnd) # mpfr-3.2.0 and later # only. $f128 is a # Math::Float128 object Set the value of $rop from 2nd arg, rounded to the precision of $rop towards the given direction $rnd. Please note that even a 'long int' may have to be rounded if the destination precision is less than the machine word width. The return value is zero when $rop=2nd arg, positive when $rop>2nd arg, and negative when $rop<2nd arg. For `mpfr_set_d', be careful that the input number $double may not be exactly representable as a double-precision number (this happens for 0.1 for instance), in which case it is first rounded by the C compiler to a double-precision number, and then only to a mpfr floating-point number. NOTE: If your perl's nvtype is 'long double' use Rmpfr_set_ld(), but your perl's nvtype is 'double' and you want to set a value whose precision is that of 'long double', then install Math::LongDouble and use Rmpfr_set_LD(). $si = Rmpfr_set_ui_2exp($rop, $ui, $exp, $rnd); $si = Rmpfr_set_si_2exp($rop, $si, $exp, $rnd); $si = Rmpfr_set_uj_2exp($rop, $sj, $exp, $rnd); # 64 bit $si = Rmpfr_set_sj_2exp($rop, $sj, $exp, $rnd); # 64 bit $si = Rmpfr_set_z_2exp($rop, $z, $exp, $rnd); # mpfr-3.0.0 and later only Set the value of $rop from the 2nd arg multiplied by two to the power $exp, rounded towards the given direction $rnd. Note that the input 0 is converted to +0. ($z is a GMP mpz object.) $si = Rmpfr_set_str($rop, $str, $base, $rnd); Set $rop to the value of $str in base $base (0,2..36 or, if Math::MPFR has been built against mpfr-3.0.0 or later, 0,2..62), rounded in direction $rnd to the precision of $rop. The exponent is read in decimal. This function returns 0 if the entire string is a valid number in base $base. otherwise it returns -1. If $base is zero, the base is set according to the following rules: if the string starts with '0b' or '0B' the base is set to 2; if the string starts with '0x' or '0X' the base is set to 16; otherwise the base is set to 10. The following exponent symbols can be used: '@' - can be used for any base; 'e' or 'E' - can be used only with bases <= 10; 'p' or 'P' - can be used to introduce binary exponents with hexadecimal or binary strings. See the MPFR library documentation for more details. See also 'Rmpfr_inp_str' (below). Because of the special significance of the '@' symbol in perl, make sure you assign to strings using single quotes, not double quotes, when using '@' as the exponent marker. If you must use double quotes (which is hard to believe) then you need to escape the '@'. ie the following two assignments are equivalent: Rmpfr_set_str($rop, '.1234@-5', 10, GMP_RNDN); Rmpfr_set_str($rop, ".1234\@-5", 10, GMP_RNDN); But the following assignment won't do what you want: Rmpfr_set_str($rop, ".1234@-5", 10, GMP_RNDN); Rmpfr_strtofr($rop, $str, $base, $rnd); Read a floating point number from a string $str in base $base, rounded in the direction $rnd. If successful, the result is stored in $rop. If $str doesn't start with a valid number then $rop is set to zero. Parsing follows the standard C `strtod' function with some extensions. Case is ignored. After optional leading whitespace, one has a subject sequence consisting of an optional sign (`+' or `-'), and either numeric data or special data. The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-whitespace character, that is of the expected form. The form of numeric data is a non-empty sequence of significand digits with an optional decimal point, and an optional exponent consisting of an exponent prefix followed by an optional sign and a non-empty sequence of decimal digits. A significand digit is either a decimal digit or a Latin letter (62 possible characters), with `a' = 10, `b' = 11, ..., `z' = 36; its value must be strictly less than the base. The decimal point can be either the one defined by the current locale or the period (the first one is accepted for consistency with the C standard and the practice, the second one is accepted to allow the programmer to provide MPFR numbers from strings in a way that does not depend on the current locale). The exponent prefix can be `e' or `E' for bases up to 10, or `@' in any base; it indicates a multiplication by a power of the base. In bases 2 and 16, the exponent prefix can also be `p' or `P', in which case it introduces a binary exponent: it indicates a multiplication by a power of 2 (there is a difference only for base 16). The value of an exponent is always written in base 10. In base 2, the significand can start with `0b' or `0B', and in base 16, it can start with `0x' or `0X'. If the argument $base is 0, then the base is automatically detected as follows. If the significand starts with `0b' or `0B', base 2 is assumed. If the significand starts with `0x' or `0X', base 16 is assumed. Otherwise base 10 is assumed. Other allowable values for $base are 2 to 36 (2 to 62 if Math::MPFR has been built against mpfr-3.0.0 or later). Note: The exponent must contain at least a digit. Otherwise the possible exponent prefix and sign are not part of the number (which ends with the significand). Similarly, if `0b', `0B', `0x' or `0X' is not followed by a binary/hexadecimal digit, then the subject sequence stops at the character `0'. Special data (for infinities and NaN) can be `@inf@' or `@nan@(n-char-sequence)', and if BASE <= 16, it can also be `infinity', `inf', `nan' or `nan(n-char-sequence)', all case insensitive. A `n-char-sequence' is a non-empty string containing only digits, Latin letters and the underscore (0, 1, 2, ..., 9, a, b, ..., z, A, B, ..., Z, _). Note: one has an optional sign for all data, even NaN. The function returns a usual ternary value. Rmpfr_set_str_binary($rop, $str); Set $rop to the value of the binary number in $str, which has to be of the form +/-xxxx.xxxxxxEyy. The exponent is read in decimal, but is interpreted as the power of two to be multiplied by the mantissa. The mantissa length of $str has to be less or equal to the precision of $rop, otherwise an error occurs. If $str starts with `N', it is interpreted as NaN (Not-a-Number); if it starts with `I' after the sign, it is interpreted as infinity, with the corresponding sign. Rmpfr_set_inf($rop, $si); Rmpfr_set_nan($rop); Rmpfr_set_zero($rop, $si); # mpfr-3.0.0 and later only. Set the variable $rop to infinity or NaN (Not-a-Number) or zero respectively. In 'mpfr_set_inf' and 'mpfr_set_zero', the sign of $rop is positive if 2nd arg >= 0. Else the sign is negative. Rmpfr_swap($op1, $op2); Swap the values $op1 and $op2 efficiently. Warning: the precisions are exchanged too; in case the precisions are different, `mpfr_swap' is thus not equivalent to three `mpfr_set' calls using a third auxiliary variable. ################################################ COMBINED INITIALIZATION AND ASSIGNMENT NOTE: Do NOT use these functions if $rop has already been initialised. Use the Rmpfr_set* functions in the section 'ASSIGNMENT' (above). First read the section 'MEMORY MANAGEMENT' (above). $rop = Math::MPFR->new($arg); $rop = Math::MPFR::new($arg); $rop = new Math::MPFR($arg); Returns a Math::MPFR object with the value of $arg, rounded in the default rounding direction, with default precision. $arg can be either a number (signed integer, unsigned integer, signed fraction or unsigned fraction), a string that represents a numeric value, or an object (of type Math::GMPf, Math::GMPq, Math::GMPz, orMath::GMP) If $arg is a string, an optional additional argument that specifies the base of the number can be supplied to new(). Legal values for base are 0 and 2 to 36 (2 to 62 if Math::MPFR has been built against mpfr-3.0.0 or later). If $arg is a string and no additional argument is supplied, an attempt is made to deduce base. See 'Rmpfr_set_str' above for an explanation of how that deduction is attempted. For finer grained control, use one of the 'Rmpfr_init_set_*' functions documented immediately below. Note that these functions return a list of 2 values. ($rop, $si) = Rmpfr_init_set($op, $rnd); ($rop, $si) = Rmpfr_init_set_nobless($op, $rnd); ($rop, $si) = Rmpfr_init_set_ui($ui, $rnd); ($rop, $si) = Rmpfr_init_set_ui_nobless($ui, $rnd); ($rop, $si) = Rmpfr_init_set_si($si, $rnd); ($rop, $si) = Rmpfr_init_set_si_nobless($si, $rnd); ($rop, $si) = Rmpfr_init_set_d($double, $rnd); ($rop, $si) = Rmpfr_init_set_d_nobless($double, $rnd); ($rop, $si) = Rmpfr_init_set_ld($double, $rnd); ($rop, $si) = Rmpfr_init_set_ld_nobless($double, $rnd); ($rop, $si) = Rmpfr_init_set_f($f, $rnd);# $f is a mpf object ($rop, $si) = Rmpfr_init_set_f_nobless($f, $rnd);# $f is a mpf object ($rop, $si) = Rmpfr_init_set_z($z, $rnd);# $z is a mpz object ($rop, $si) = Rmpfr_init_set_z_nobless($z, $rnd);# $z is a mpz object ($rop, $si) = Rmpfr_init_set_q($q, $rnd);# $q is a mpq object ($rop, $si) = Rmpfr_init_set_q_nobless($q, $rnd);# $q is a mpq object Initialize $rop and set its value from the 1st arg, rounded to direction $rnd. The precision of $rop will be taken from the active default precision, as set by `Rmpfr_set_default_prec'. If $rop = 1st arg, $si is zero. If $rop > 1st arg, $si is positive. If $rop < 1st arg, $si is negative. ($rop, $si) = Rmpfr_init_set_str($str, $base, $rnd); ($rop, $si) = Rmpfr_init_set_str_nobless($str, $base, $rnd); Initialize $rop and set its value from $str in base $base, rounded to direction $rnd. If $str was a valid number, then $si will be set to 0. Else it will be set to -1. See `Rmpfr_set_str' (above) and 'Rmpfr_inp_str' (below). ########## CONVERSION $str = Rmpfr_get_str($op, $base, $digits, $rnd); Returns a string of the form, eg, '8.3456712@2' which means '834.56712'. The third argument to Rmpfr_get_str() specifies the number of digits required to be output in the mantissa. (Trailing zeroes are removed.) If $digits is 0, the number of digits of the mantissa is chosen large enough so that re-reading the printed value with the same precision, assuming both output and input use rounding to nearest, will recover the original value of $op. ($str, $si) = Rmpfr_deref2($op, $base, $digits, $rnd); Returns the mantissa to $str (as a string of digits, prefixed with a minus sign if $op is negative), and returns the exponent to $si. There's an implicit decimal point to the left of the first digit in $str. The third argument to Rmpfr_deref2() specifies the number of digits required to be output in the mantissa. If $digits is 0, the number of digits of the mantissa is chosen large enough so that re-reading the printed value with the same precision, assuming both output and input use rounding to nearest, will recover the original value of $op. $str = Rmpfr_integer_string($op, $base, $rnd); Returns the truncated integer value of $op as a string. (No exponent is returned). For example, if $op contains the value 2.3145679e2, $str will be set to "231". (This function is mainly to provide a simple means of getting 'sj' and 'uj' values on a 64-bit perl where the MPFR library does not support mpfr_get_uj and mpfr_get_sj functions - which may happen, for example, with libraries built with Microsoft Compilers.) $bool = Rmpfr_fits_ushort_p($op, $rnd); # fits in unsigned short $bool = Rmpfr_fits_sshort_p($op, $rnd); # fits in signed short $bool = Rmpfr_fits_uint_p($op, $rnd); # fits in unsigned int $bool = Rmpfr_fits_sint_p($op, $rnd); # fits in signed int $bool = Rmpfr_fits_ulong_p($op, $rnd); # fits in unsigned long $bool = Rmpfr_fits_slong_p($op, $rnd); # fits in signed long $bool = Rmpfr_fits_uintmax_p($op, $rnd); # fits in uintmax_t $bool = Rmpfr_fits_intmax_p($op, $rnd); # fits in intmax_t $bool = Rmpfr_fits_IV_p($op, $rnd); # fits in perl IV $bool = Rmpfr_fits_UV_p($op, $rnd); # fits in perl UV Return non-zero if $op would fit in the respective data type, when rounded to an integer in the direction $rnd. $ui = Rmpfr_get_ui($op, $rnd); $si = Rmpfr_get_si($op, $rnd); $sj = Rmpfr_get_sj($op, $rnd); # 64 bit builds only $uj = Rmpfr_get_uj($op, $rnd); # 64 bit builds only $uv = Rmpfr_get_UV($op, $rnd); # 32 and 64 bit $iv = Rmpfr_get_IV($op, $rnd); # 32 and 64 bit Convert $op to an 'unsigned long long', a 'signed long', a 'signed long long', an `unsigned long long', a 'UV', or an 'IV' - after rounding it with respect to $rnd. If $op is NaN, the result is undefined. If $op is too big for the return type, it returns the maximum or the minimum of the corresponding C type, depending on the direction of the overflow. The flag erange is then also set. $double = Rmpfr_get_d($op, $rnd); $ld = Rmpfr_get_ld($op, $rnd); $nv = Rmpfr_get_NV($op, $rnd); $float = Rmpfr_get_flt($op, $rnd); # mpfr-3.0.0 and later. Rmpfr_get_LD($LD, $op, $rnd); # $LD is a Math::LongDouble object. Rmpfr_get_decimal64($d64, $op, $rnd); # mpfr-3.1.1 and later. # $d64 is a Math::Decimal64 # object. Rmpfr_get_float128($f128, $op, $rnd); # mpfr-3.2.0 and later. # $f128 is a Math::Float128 # object. Convert $op to a 'double' a 'long double' an 'NV', a float, a Math::LongDouble object, a Math::Decimal64 object, or a Math::Float128 object using the rounding mode $rnd. NOTE: If your perl's nvtype is 'long double' use Rmpfr_get_ld(), but if your perl's nvtype is 'double' and you want to get a value whose precision is that of 'long double', then install Math::LongDouble and use Rmpfr_get_LD(). $double = Rmpfr_get_d1($op); Convert $op to a double, using the default MPFR rounding mode (see function `mpfr_set_default_rounding_mode'). $si = Rmpfr_get_z_exp($z, $op); # $z is a mpz object $si = Rmpfr_get_z_2exp($z, $op); # $z is a mpz object (Identical functions. Use either - 'get_z_exp' might one day be removed.) Puts the mantissa of $rop into $z, and returns the exponent $si such that $rop == $z * (2 ** $ui). $si = Rmpfr_get_z($z, $op, $rnd); # $z is a mpz object. Convert $op to an mpz object ($z), after rounding it with respect to RND. If built against mpfr-3.0.0 or later, return the usual ternary value. (The function returns undef when using mpfr-2.x.x.) If $op is NaN or Inf, the result is undefined. $si = Rmpfr_get_f ($f, $op, $rnd); # $f is an mpf object. Convert $op to a `mpf_t', after rounding it with respect to $rnd. When built against mpfr-3.0.0 or later, this function returns the usual ternary value. (If $op is NaN or Inf, then the erange flag will be set.) When built against earlier versions of mpfr, return zero iff no error occurred.In particular a non-zero value is returned if $op is NaN or Inf. which do not exist in `mpf'. $d = Rmpfr_get_d_2exp ($exp, $op, $rnd); # $d is NV (double) $d = Rmpfr_get_ld_2exp ($exp, $op, $rnd); # $d is NV (long double) Set $exp and $d such that 0.5<=abs($d)<1 and $d times 2 raised to $exp equals $op rounded to double (resp. long double) precision, using the given rounding mode. If $op is zero, then a zero of the same sign (or an unsigned zero, if the implementation does not have signed zeros) is returned, and $exp is set to 0. If $op is NaN or an infinity, then the corresponding double precision (resp. long-double precision) value is returned, and $exp is undefined. $si1 = Rmpfr_frexp($si2, $rop, $op, $rnd); # mpfr-3.1.0 and later only Set $si and $rop such that 0.5<=abs($rop)<1 and $rop * (2 ** $exp) equals $op rounded to the precision of $rop, using the given rounding mode. If $op is zero, then $rop is set to zero (of the same sign) and $exp is set to 0. If $op is NaN or an infinity, then $rop is set to the same value and the value of $exp is meaningless (and should be ignored). ########## ARITHMETIC $si = Rmpfr_add($rop, $op1, $op2, $rnd); $si = Rmpfr_add_ui($rop, $op, $ui, $rnd); $si = Rmpfr_add_si($rop, $op, $si1, $rnd); $si = Rmpfr_add_d($rop, $op, $double, $rnd); $si = Rmpfr_add_z($rop, $op, $z, $rnd); # $z is a mpz object. $si = Rmpfr_add_q($rop, $op, $q, $rnd); # $q is a mpq object. Set $rop to 2nd arg + 3rd arg rounded in the direction $rnd. The return value is zero if $rop is exactly 2nd arg + 3rd arg, positive if $rop is larger than 2nd arg + 3rd arg, and negative if $rop is smaller than 2nd arg + 3rd arg. $si = Rmpfr_sum($rop, \@ops, scalar(@ops), $rnd); @ops is an array consisting entirely of Math::MPFR objects. Set $rop to the sum of all members of @ops, rounded in the direction $rnd. $si is zero when the computed value is the exact value, and non-zero when this cannot be guaranteed, without giving the direction of the error as the other functions do. $si = Rmpfr_sub($rop, $op1, $op2, $rnd); $si = Rmpfr_sub_ui($rop, $op, $ui, $rnd); $si = Rmpfr_sub_z($rop, $op, $z, $rnd); # $z is a mpz object. $si = Rmpfr_z_sub($rop, $z, $op, $rnd); # mpfr-3.1.0 and later only $si = Rmpfr_sub_q($rop, $op, $q, $rnd); # $q is a mpq object. $si = Rmpfr_ui_sub($rop, $ui, $op, $rnd); $si = Rmpfr_si_sub($rop, $si1, $op, $rnd); $si = Rmpfr_sub_si($rop, $op, $si1, $rnd); $si = Rmpfr_sub_d($rop, $op, $double, $rnd); $si = Rmpfr_d_sub($rop, $double, $op, $rnd); Set $rop to 2nd arg - 3rd arg rounded in the direction $rnd. The return value is zero if $rop is exactly 2nd arg - 3rd arg, positive if $rop is larger than 2nd arg - 3rd arg, and negative if $rop is smaller than 2nd arg - 3rd arg. $si = Rmpfr_mul($rop, $op1, $op2, $rnd); $si = Rmpfr_mul_ui($rop, $op, $ui, $rnd); $si = Rmpfr_mul_si($rop, $op, $si1, $rnd); $si = Rmpfr_mul_d($rop, $op, $double, $rnd); $si = Rmpfr_mul_z($rop, $op, $z, $rnd); # $z is a mpz object. $si = Rmpfr_mul_q($rop, $op, $q, $rnd); # $q is a mpq object. Set $rop to 2nd arg * 3rd arg rounded in the direction $rnd. Return 0 if the result is exact, a positive value if $rop is greater than 2nd arg times 3rd arg, a negative value otherwise. $si = Rmpfr_div($rop, $op1, $op2, $rnd); $si = Rmpfr_div_ui($rop, $op, $ui, $rnd); $si = Rmpfr_ui_div($rop, $ui, $op, $rnd); $si = Rmpfr_div_si($rop, $op, $si1, $rnd); $si = Rmpfr_si_div($rop, $si1, $op, $rnd); $si = Rmpfr_div_d($rop, $op, $double, $rnd); $si = Rmpfr_d_div($rop, $double, $op, $rnd); $si = Rmpfr_div_z($rop, $op, $z, $rnd); # $z is a mpz object. $si = Rmpfr_div_q($rop, $op, $q, $rnd); # $q is a mpq object. Set $rop to 2nd arg / 3rd arg rounded in the direction $rnd. These functions return 0 if the division is exact, a positive value when $rop is larger than 2nd arg divided by 3rd arg, and a negative value otherwise. $si = Rmpfr_sqr($rop, $op, $rnd); Set $rop to the square of $op, rounded in direction $rnd. $si = Rmpfr_sqrt($rop, $op, $rnd); $si = Rmpfr_sqrt_ui($rop, $ui, $rnd); Set $rop to the square root of the 2nd arg rounded in the direction $rnd. Set $rop to NaN if 2nd arg is negative. Return 0 if the operation is exact, a non-zero value otherwise. $si = Rmpfr_rec_sqrt($rop, $op, $rnd); Set $rop to the reciprocal square root of $op rounded in the direction $rnd. Set $rop to +Inf if $op is 0, and 0 if $op is +Inf. Set $rop to NaN if $op is negative. $si = Rmpfr_cbrt($rop, $op, $rnd); Set $rop to the cubic root (defined over the real numbers) of $op, rounded in the direction $rnd. $si = Rmpfr_root($rop, $op, $ui $rnd); Set $rop to the $ui'th root of $op, rounded in the direction $rnd. Return 0 if the operation is exact, a non-zero value otherwise. $si = Rmpfr_pow_ui($rop, $op, $ui, $rnd); $si = Rmpfr_pow_si($rop, $op, $si, $rnd); $si = Rmpfr_ui_pow_ui($rop, $ui, $ui, $rnd); $si = Rmpfr_ui_pow($rop, $ui, $op, $rnd); $si = Rmpfr_pow($rop, $op1, $op2, $rnd); $si = Rmpfr_pow_z($rop, $op1, $z, $rnd); # $z is a mpz object Set $rop to 2nd arg raised to 3rd arg, rounded to the directio $rnd with the precision of $rop. Return zero iff the result is exact, a positive value when the result is greater than 2nd arg to the power 3rd arg, and a negative value when it is smaller. See the MPFR documentation for documentation regarding special cases. $si = Rmpfr_neg($rop, $op, $rnd); Set $rop to -$op rounded in the direction $rnd. Just changes the sign if $rop and $op are the same variable. $si = Rmpfr_abs($rop, $op, $rnd); Set $rop to the absolute value of $op, rounded in the direction $rnd. Return 0 if the result is exact, a positive value if $rop is larger than the absolute value of $op, and a negative value otherwise. $si = Rmpfr_dim($rop, $op1, $op2, $rnd); Set $rop to the positive difference of $op1 and $op2, i.e., $op1 - $op2 rounded in the direction $rnd if $op1 > $op2, and +0 otherwise. $rop is set to NaN when $op1 or $op2 is NaN. $si = Rmpfr_mul_2exp($rop, $op, $ui, $rnd); $si = Rmpfr_mul_2ui($rop, $op, $ui, $rnd); $si = Rmpfr_mul_2si($rop, $op, $si, $rnd); Set $rop to 2nd arg times 2 raised to 3rd arg rounded to the direction $rnd. Just increases the exponent by 3rd arg when $rop and 2nd arg are identical. Return zero when $rop = 2nd arg, a positive value when $rop > 2nd arg, and a negative value when $rop < 2nd arg. Note: The `Rmpfr_mul_2exp' function is defined for compatibility reasons; you should use `Rmpfr_mul_2ui' (or `Rmpfr_mul_2si') instead. $si = Rmpfr_div_2exp($rop, $op, $ui, $rnd); $si = Rmpfr_div_2ui($rop, $op, $ui, $rnd); $si = Rmpfr_div_2si($rop, $op, $si, $rnd); Set $rop to 2nd arg divided by 2 raised to 3rd arg rounded to the direction $rnd. Just decreases the exponent by 3rd arg when $rop and 2nd arg are identical. Return zero when $rop = 2nd arg, a positive value when $rop > 2nd arg, and a negative value when $rop < 2nd arg. Note: The `Rmpfr_div_2exp' function is defined for compatibility reasons; you should use `Rmpfr_div_2ui' (or `Rmpfr_div_2si') instead. ########## COMPARISON $si = Rmpfr_cmp($op1, $op2); $si = Rmpfr_cmpabs($op1, $op2); $si = Rmpfr_cmp_ui($op, $ui); $si = Rmpfr_cmp_si($op, $si); $si = Rmpfr_cmp_d($op, $double); $si = Rmpfr_cmp_ld($op, $ld); # long double $si = Rmpfr_cmp_z($op, $z); # $z is a mpz object $si = Rmpfr_cmp_q($op, $q); # $q is a mpq object $si = Rmpfr_cmp_f($op, $f); # $f is a mpf object Compare 1st and 2nd args. In the case of 'Rmpfr_cmpabs()' compare the absolute values of the 2 args. Return a positive value if 1st arg > 2nd arg, zero if 1st arg = 2nd arg, and a negative value if 1st arg < 2nd arg. Both args are considered to their full own precision, which may differ. In case 1st and 2nd args are of same sign but different, the absolute value returned is one plus the absolute difference of their exponents. If one of the operands is NaN (Not-a-Number), return zero and set the erange flag. $si = Rmpfr_cmp_ui_2exp($op, $ui, $si); $si = Rmpfr_cmp_si_2exp($op, $si, $si); Compare 1st arg and 2nd arg multiplied by two to the power 3rd arg. $bool = Rmpfr_eq($op1, $op2, $ui); The mpfr library function mpfr_eq may change in future releases of the mpfr library (post 2.4.0). If that happens, the change will also be relected in Rmpfr_eq. Return non-zero if the first $ui bits of $op1 and $op2 are equal, zero otherwise. I.e., tests if $op1 and $op2 are approximately equal. $bool = Rmpfr_nan_p($op); Return non-zero if $op is Not-a-Number (NaN), zero otherwise. $bool = Rmpfr_inf_p($op); Return non-zero if $op is plus or minus infinity, zero otherwise. $bool = Rmpfr_number_p($op); Return non-zero if $op is an ordinary number, i.e. neither Not-a-Number nor plus or minus infinity. $bool = Rmpfr_zero_p($op); Return non-zero if $op is zero. Else return 0. $bool = Rmpfr_regular_p($op); # mpfr-3.0.0 and later only Return non-zero if $op is a regular number (i.e. neither NaN, nor an infinity nor zero). Return zero otherwise. Rmpfr_reldiff($rop, $op1, $op2, $rnd); Compute the relative difference between $op1 and $op2 and store the result in $rop. This function does not guarantee the exact rounding on the relative difference; it just computes abs($op1-$op2)/$op1, using the rounding mode $rnd for all operations. $si = Rmpfr_sgn($op); Return a positive value if op > 0, zero if $op = 0, and a negative value if $op < 0. Its result is not specified when $op is NaN (Not-a-Number). $bool = Rmpfr_greater_p($op1, $op2); Return non-zero if $op1 > $op2, zero otherwise. $bool = Rmpfr_greaterequal_p($op1, $op2); Return non-zero if $op1 >= $op2, zero otherwise. $bool = Rmpfr_less_p($op1, $op2); Return non-zero if $op1 < $op2, zero otherwise. $bool = Rmpfr_lessequal_p($op1, $op2); Return non-zero if $op1 <= $op2, zero otherwise. $bool = Rmpfr_lessgreater_p($op1, $op2); Return non-zero if $op1 < $op2 or $op1 > $op2 (i.e. neither $op1, nor $op2 is NaN, and $op1 <> $op2), zero otherwise (i.e. $op1 and/or $op2 are NaN, or $op1 = $op2). $bool = Rmpfr_equal_p($op1, $op2); Return non-zero if $op1 = $op2, zero otherwise (i.e. $op1 and/or $op2 are NaN, or $op1 <> $op2). $bool = Rmpfr_unordered_p($op1, $op2); Return non-zero if $op1 or $op2 is a NaN (i.e. they cannot be compared), zero otherwise. ####### SPECIAL $si = Rmpfr_log($rop, $op, $rnd); $si = Rmpfr_log2($rop, $op, $rnd); $si = Rmpfr_log10($rop, $op, $rnd); Set $rop to the natural logarithm of $op, log2($op) or log10($op), respectively, rounded in the direction rnd. $si = Rmpfr_exp($rop, $op, $rnd); $si = Rmpfr_exp2($rop, $op, $rnd); $si = Rmpfr_exp10($rop, $op, $rnd); Set rop to the exponential of op, to 2 power of op or to 10 power of op, respectively, rounded in the direction rnd. $si = Rmpfr_sin($rop $op, $rnd); $si = Rmpfr_cos($rop, $op, $rnd); $si = Rmpfr_tan($rop, $op, $rnd); Set $rop to the sine/cosine/tangent respectively of $op, rounded to the direction $rnd with the precision of $rop. Return 0 iff the result is exact (this occurs in fact only when $op is 0 i.e. the sine is 0, the cosine is 1, and the tangent is 0). Return a negative value iff the result is less than the actual value. Return a positive result iff the return is greater than the actual value. $si = Rmpfr_sin_cos($rop1, $rop2, $op, $rnd); Set simultaneously $rop1 to the sine of $op and $rop2 to the cosine of $op, rounded to the direction $rnd with their corresponding precisions. Return 0 iff both results are exact. $si = Rmpfr_sinh_cosh($rop1, $rop2, $op, $rnd); Set simultaneously $rop1 to the hyperbolic sine of $op and $rop2 to the hyperbolic cosine of $op, rounded in the direction $rnd with the corresponding precision of $rop1 and $rop2 which must be different variables. Return 0 iff both results are exact. $si = Rmpfr_acos($rop, $op, $rnd); $si = Rmpfr_asin($rop, $op, $rnd); $si = Rmpfr_atan($rop, $op, $rnd); Set $rop to the arc-cosine, arc-sine or arc-tangent of $op, rounded to the direction $rnd with the precision of $rop. Return 0 iff the result is exact. Return a negative value iff the result is less than the actual value. Return a positive result iff the return is greater than the actual value. $si = Rmpfr_atan2($rop, $op1, $op2, $rnd); Set $rop to the tangent of $op1/$op2, rounded to the direction $rnd with the precision of $rop. Return 0 iff the result is exact. Return a negative value iff the result is less than the actual value. Return a positive result iff the return is greater than the actual value. See the MPFR documentation for details regarding special cases. $si = Rmpfr_cosh($rop, $op, $rnd); $si = Rmpfr_sinh($rop, $op, $rnd); $si = Rmpfr_tanh($rop, $op, $rnd); Set $rop to the hyperbolic cosine/hyperbolic sine/hyperbolic tangent respectively of $op, rounded to the direction $rnd with the precision of $rop. Return 0 iff the result is exact (this occurs in fact only when $op is 0 i.e. the result is 1). Return a negative value iff the result is less than the actual value. Return a positive result iff the return is greater than the actual value. $si = Rmpfr_acosh($rop, $op, $rnd); $si = Rmpfr_asinh($rop, $op, $rnd); $si = Rmpfr_atanh($rop, $op, $rnd); Set $rop to the inverse hyperbolic cosine, sine or tangent of $op, rounded to the direction $rnd with the precision of $rop. Return 0 iff the result is exact. $si = Rmpfr_sec ($rop, $op, $rnd); $si = Rmpfr_csc ($rop, $op, $rnd); $si = Rmpfr_cot ($rop, $op, $rnd); Set $rop to the secant of $op, cosecant of $op, cotangent of $op, rounded in the direction RND. Return 0 iff the result is exact. Return a negative value iff the result is less than the actual value. Return a positive result iff the return is greater than the actual value. $si = Rmpfr_sech ($rop, $op, $rnd); $si = Rmpfr_csch ($rop, $op, $rnd); $si = Rmpfr_coth ($rop, $op, $rnd); Set $rop to the hyperbolic secant of $op, cosecant of $op, cotangent of $op, rounded in the direction RND. Return 0 iff the result is exact. Return a negative value iff the result is less than the actual value. Return a positive result iff the return is greater than the actual value. $bool = Rmpfr_fac_ui($rop, $ui, $rnd); Set $rop to the factorial of $ui, rounded to the direction $rnd with the precision of $rop. Return 0 iff the result is exact. $bool = Rmpfr_log1p($rop, $op, $rnd); Set $rop to the logarithm of one plus $op, rounded to the direction $rnd with the precision of $rop. Return 0 iff the result is exact (this occurs in fact only when $op is 0 i.e. the result is 0). $bool = Rmpfr_expm1($rop, $op, $rnd); Set $rop to the exponential of $op minus one, rounded to the direction $rnd with the precision of $rop. Return 0 iff the result is exact (this occurs in fact only when $op is 0 i.e the result is 0). $si = Rmpfr_fma($rop, $op1, $op2, $op3, $rnd); Set $rop to $op1 * $op2 + $op3, rounded to the direction $rnd. $si = Rmpfr_fms($rop, $op1, $op2, $op3, $rnd); Set $rop to $op1 * $op2 - $op3, rounded to the direction $rnd. $si = Rmpfr_agm($rop, $op1, $op2, $rnd); Set $rop to the arithmetic-geometric mean of $op1 and $op2, rounded to the direction $rnd with the precision of $rop. Return zero if $rop is exact, a positive value if $rop is larger than the exact value, or a negative value if $rop is less than the exact value. $si = Rmpfr_hypot ($rop, $op1, $op2, $rnd); Set $rop to the Euclidean norm of $op1 and $op2, i.e. the square root of the sum of the squares of $op1 and $op2, rounded in the direction $rnd. Special values are currently handled as described in Section F.9.4.3 of the ISO C99 standard, for the hypot function (note this may change in future versions): If $op1 or $op2 is an infinity, then plus infinity is returned in $rop, even if the other number is NaN. $si = Rmpfr_ai($rop, $op, $rnd); # mpfr-3.0.0 and later only Set $rop to the value of the Airy function Ai on $op, rounded in the direction $rnd. When $op is NaN, $rop is always set to NaN. When $op is +Inf or -Inf, $rop is +0. The current implementation is not intended to be used with large arguments. It works with $op typically smaller than 500. For larger arguments, other methods should be used and will be implemented soon. $si = Rmpfr_const_log2($rop, $rnd); Set $rop to the logarithm of 2 rounded to the direction $rnd with the precision of $rop. This function stores the computed value to avoid another calculation if a lower or equal precision is requested. Return zero if $rop is exact, a positive value if $rop is larger than the exact value, or a negative value if $rop is less than the exact value. $si = Rmpfr_const_pi($rop, $rnd); Set $rop to the value of Pi rounded to the direction $rnd with the precision of $rop. This function uses the Borwein, Borwein, Plouffe formula which directly gives the expansion of Pi in base 16. Return zero if $rop is exact, a positive value if $rop is larger than the exact value, or a negative value if $rop is less than the exact value. $si = Rmpfr_const_euler($rop, $rnd); Set $rop to the value of Euler's constant 0.577... rounded to the direction $rnd with the precision of $rop. Return zero if $rop is exact, a positive value if $rop is larger than the exact value, or a negative value if $rop is less than the exact value. $si = Rmpfr_const_catalan($rop, $rnd); Set $rop to the value of Catalan's constant 0.915... rounded to the direction $rnd with the precision of $rop. Return zero if $rop is exact, a positive value if $rop is larger than the exact value, or a negative value if $rop is less than the exact value. Rmpfr_free_cache(); Free the cache used by the functions computing constants if needed (currently `mpfr_const_log2', `mpfr_const_pi' and `mpfr_const_euler'). $si = Rmpfr_gamma($rop, $op, $rnd); $si = Rmpfr_lngamma($rop, $op, $rnd); Set $rop to the value of the Gamma function on $op (and, respectively, its natural logarithm) rounded to the direction $rnd. Return zero if $rop is exact, a positive value if $rop is larger than the exact value, or a negative value if $rop is less than the exact value. ($signp, $si) = Rmpfr_lgamma ($rop, $op, $rnd); Set $rop to the value of the logarithm of the absolute value of the Gamma function on $op, rounded in the direction $rnd. The sign (1 or -1) of Gamma($op) is returned in $signp. When $op is an infinity or a non-positive integer, +Inf is returned. When $op is NaN, -Inf or a negative integer, $signp is undefined, and when $op is 0, $signp is the sign of the zero. $si = Rmpfr_digamma ($rop, $op, $rnd); # mpfr-3.0.0 and later only Set $rop to the value of the Digamma (sometimes also called Psi) function on $op, rounded in the direction $rnd. When $op is a negative integer, set $rop to NaN. $si = Rmpfr_zeta($rop, $op, $rnd); $si = Rmpfr_zeta_ui($rop, $ul, $rnd); Set $rop to the value of the Riemann Zeta function on 2nd arg, rounded to the direction $rnd. Return zero if $rop is exact, a positive value if $rop is larger than the exact value, or a negative value if $rop is less than the exact value. $si = Rmpfr_erf($rop, $op, $rnd); Set $rop to the value of the error function on $op, rounded to the direction $rnd. Return zero if $rop is exact, a positive value if $rop is larger than the exact value, or a negative value if $rop is less than the exact value. $si = Rmpfr_erfc($rop, $op, $rnd); Set $rop to the complementary error function on $op, rounded to the direction $rnd. Return zero if $rop is exact, a positive value if $rop is larger than the exact value, or a negative value if $rop is less than the exact value. $si = Rmpfr_j0 ($rop, $op, $rnd); $si = Rmpfr_j1 ($rop, $op, $rnd); $si = Rmpfr_jn ($rop, $si2, $op, $rnd); Set $rop to the value of the first order Bessel function of order 0, 1 and $si2 on $op, rounded in the direction $rnd. When $op is NaN, $rop is always set to NaN. When $op is plus or minus Infinity, $rop is set to +0. When $op is zero, and $si2 is not zero, $rop is +0 or -0 depending on the parity and sign of $si2, and the sign of $op. $si = Rmpfr_y0 ($rop, $op, $rnd); $si = Rmpfr_y1 ($rop, $op, $rnd); $si = Rmpfr_yn ($rop, $si2, $op, $rnd); Set $rop to the value of the second order Bessel function of order 0, 1 and $si2 on $op, rounded in the direction $rnd. When $op is NaN or negative, $rop is always set to NaN. When $op is +Inf, $rop is +0. When $op is zero, $rop is +Inf or -Inf depending on the parity and sign of $si2. $si = Rmpfr_eint ($rop, $op, $rnd) Set $rop to the exponential integral of $op, rounded in the direction $rnd. See the MPFR documentation for details. $si = Rmpfr_li2 ($rop, $op, $rnd); Set $rop to real part of the dilogarithm of $op, rounded in the direction $rnd. The dilogarithm function is defined here as the integral of -log(1-t)/t from 0 to x. ############# I-O FUNCTIONS $ui = Rmpfr_out_str([$prefix,] $op, $base, $digits, $round [, $suffix]); BEST TO USE TRmpfr_out_str INSTEAD Output $op to STDOUT, as a string of digits in base $base, rounded in direction $round. The base may vary from 2 to 36 (2 to 62 if Math::MPFR has been built against mpfr-3.0.0 or later). Print $digits significant digits exactly, or if $digits is 0, enough digits so that $op can be read back exactly (see Rmpfr_get_str). In addition to the significant digits, a decimal point at the right of the first digit and a trailing exponent in base 10, in the form `eNNN', are printed If $base is greater than 10, `@' will be used instead of `e' as exponent delimiter. The optional arguments, $prefix and $suffix, are strings that will be prepended/appended to the mpfr_out_str output. Return the number of bytes written (not counting those contained in $suffix and $prefix), or if an error occurred, return 0. (Note that none, one or both of $prefix and $suffix can be supplied.) $ui = TRmpfr_out_str([$prefix,] $stream, $base, $digits, $op, $round [, $suffix]); As for Rmpfr_out_str, except that there's the capability to print to somewhere other than STDOUT. Note that the order of the args is different (to match the order of the mpfr_out_str args). To print to STDERR: TRmpfr_out_str(*stderr, $base, $digits, $op, $round); To print to an open filehandle (let's call it FH): TRmpfr_out_str(\*FH, $base, $digits, $op, $round); $ui = Rmpfr_inp_str($rop, $base, $round); BEST TO USE TRmpfr_inp_str INSTEAD. Input a string in base $base from STDIN, rounded in direction $round, and put the read float in $rop. The string is of the form `M@N' or, if the base is 10 or less, alternatively `MeN' or `MEN', or, if the base is 16, alternatively `MpB' or `MPB'. `M' is the mantissa in the specified base, `N' is the exponent written in decimal for the specified base, and in base 16, `B' is the binary exponent written in decimal (i.e. it indicates the power of 2 by which the mantissa is to be scaled). The argument $base may be in the range 2 to 36 (2 to 62 if Math::MPFR has been built against mpfr-3.0.0 or later). Special values can be read as follows (the case does not matter): `@NaN@', `@Inf@', `+@Inf@' and `-@Inf@', possibly followed by other characters; if the base is smaller or equal to 16, the following strings are accepted too: `NaN', `Inf', `+Inf' and `-Inf'. Return the number of bytes read, or if an error occurred, return 0. $ui = TRmpfr_inp_str($rop, $stream, $base, $round); As for Rmpfr_inp_str, except that there's the capability to read from somewhere other than STDIN. To read from STDIN: TRmpfr_inp_str($rop, *stdin, $base, $round); To read from an open filehandle (let's call it FH): TRmpfr_inp_str($rop, \*FH, $base, $round); Rmpfr_print_binary($op); Output $op on stdout in raw binary format (the exponent is in decimal, yet). Rmpfr_dump($op); Output "$op\n" on stdout in base 2. As with 'Rmpfr_print_binary' the exponent is in base 10. ############# MISCELLANEOUS $MPFR_version = Rmpfr_get_version(); Returns the version of the MPFR library (eg 2.1.0) being used by Math::MPFR. $GMP_version = Math::MPFR::gmp_v(); Returns the version of the gmp library (eg. 4.1.3) being used by the mpfr library that's being used by Math::MPFR. The function is not exportable. $ui = MPFR_VERSION; An integer whose value is dependent upon the 'major', 'minor' and 'patchlevel' values of the MPFR library against which Math::MPFR was built. This value is from the mpfr.h that was in use when the compilation of Math::MPFR took place. $ui = MPFR_VERSION_MAJOR; The 'x' in the 'x.y.z' of the MPFR library version. This value is from the mpfr.h that was in use when the compilation of Math::MPFR took place. $ui = MPFR_VERSION_MINOR; The 'y' in the 'x.y.z' of the MPFR library version. This value is from the mpfr.h that was in use when the compilation of Math::MPFR took place. $ui = MPFR_VERSION_PATCHLEVEL; The 'z' in the 'x.y.z' of the MPFR library version. This value is from the mpfr.h that was in use when the compilation of Math::MPFR took place. $string = MPFR_VERSION_STRING; $string is set to the version of the MPFR library (eg 2.1.0) against which Math::MPFR was built. This value is from the mpfr.h that was in use when the compilation of Math::MPFR took place. $ui = MPFR_VERSION_NUM($major, $minor, $patchlevel); Returns the value for MPFR_VERSION on "MPFR-$major.$minor.$patchlevel". $str = Rmpfr_get_patches(); Return a string containing the ids of the patches applied to the MPFR library (contents of the `PATCHES' file), separated by spaces. Note: If the program has been compiled with an older MPFR version and is dynamically linked with a new MPFR library version, the ids of the patches applied to the old (compile-time) MPFR version are not available (however this information should not have much interest in general). $bool = Rmpfr_buildopt_tls_p(); # mpfr-3.0.0 and later only Return a non-zero value if mpfr was compiled as thread safe using compiler-level Thread Local Storage (that is mpfr was built with the `--enable-thread-safe' configure option), else return zero. $bool = Rmpfr_buildopt_decimal_p(); # mpfr-3.0.0 and later only Return a non-zero value if mpfr was compiled with decimal float support (that is mpfr was built with the `--enable-decimal-float' configure option), return zero otherwise. $bool = Rmpfr_buildopt_gmpinternals_p(); # mpfr-3.1.0 and later only Return a non-zero value if mpfr was compiled with gmp internals (that is, mpfr was built with either '--with-gmp-build' or '--enable-gmp-internals' configure option), return zero otherwise. $str = Rmpfr_buildopt_tune_case(); # mpfr-3.1.0 and later only Return a string saying which thresholds file has been used at compile time. This file is normally selected from the processor type. $si = Rmpfr_rint($rop, $op, $rnd); $si = Rmpfr_ceil($rop, $op); $si = Rmpfr_floor($rop, $op); $si = Rmpfr_round($rop, $op); $si = Rmpfr_trunc($rop, $op); Set $rop to $op rounded to an integer. `Rmpfr_ceil' rounds to the next higher representable integer, `Rmpfr_floor' to the next lower, `Rmpfr_round' to the nearest representable integer, rounding halfway cases away from zero, and `Rmpfr_trunc' to the representable integer towards zero. `Rmpfr_rint' behaves like one of these four functions, depending on the rounding mode. The returned value is zero when the result is exact, positive when it is greater than the original value of $op, and negative when it is smaller. More precisely, the returned value is 0 when $op is an integer representable in $rop, 1 or -1 when $op is an integer that is not representable in $rop, 2 or -2 when $op is not an integer. $si = Rmpfr_rint_ceil($rop, $op, $rnd); $si = Rmpfr_rint_floor($rop, $op, $rnd); $si = Rmpfr_rint_round($rop, $op, $rnd); $si = Rmpfr_rint_trunc($rop, $op, $rnd): Set $rop to $op rounded to an integer. `Rmpfr_rint_ceil' rounds to the next higher or equal integer, `Rmpfr_rint_floor' to the next lower or equal integer, `Rmpfr_rint_round' to the nearest integer, rounding halfway cases away from zero, and `Rmpfr_rint_trunc' to the next integer towards zero. If the result is not representable, it is rounded in the direction $rnd. The returned value is the ternary value associated with the considered round-to-integer function (regarded in the same way as any other mathematical function). $si = Rmpfr_frac($rop, $op, $round); Set $rop to the fractional part of $op, having the same sign as $op, rounded in the direction $round (unlike in `mpfr_rint', $round affects only how the exact fractional part is rounded, not how the fractional part is generated). $si = Rmpfr_modf ($rop1, $rop2, $op, $rnd); Set simultaneously $rop1 to the integral part of $op and $rop2 to the fractional part of $op, rounded in the direction RND with the corresponding precision of $rop1 and $rop2 (equivalent to `Rmpfr_trunc($rop1, $op, $rnd)' and `Rmpfr_frac($rop1, $op, $rnd)'). The variables $rop1 and $rop2 must be different. Return 0 iff both results are exact. $si = Rmpfr_remainder($rop, $op1, $op2, $rnd); $si = Rmpfr_fmod($rop, $op1, $op2, $rnd); ($si2, $si) = Rmpfr_remquo ($rop, $op1, $op2, $rnd); Set $rop to the remainder of the division of $op1 by $op2, with quotient rounded toward zero for 'Rmpfr_fmod' and to the nearest integer (ties rounded to even) for 'Rmpfr_remainder' and 'Rmpfr_remquo', and $rop rounded according to the direction $rnd. Special values are handled as described in Section F.9.7.1 of the ISO C99 standard: If $op1 is infinite or $op2 is zero, $rop is NaN. If $op2 is infinite and $op1 is finite, $rop is $op1 rounded to the precision of $rop. If $rop is zero, it has the sign of $op1. The return value is the ternary value corresponding to $rop. Additionally, `Rmpfr_remquo' stores the low significant bits from the quotient in $si2 (more precisely the number of bits in a `long' minus one), with the sign of $op1 divided by $op2 (except if those low bits are all zero, in which case zero is returned). Note that $op1 may be so large in magnitude relative to $op2 that an exact representation of the quotient is not practical. `Rmpfr_remainder' and `Rmpfr_remquo' functions are useful for additive argument reduction. $si = Rmpfr_integer_p($op); Return non-zero iff $op is an integer. Rmpfr_nexttoward($op1, $op2); If $op1 or $op2 is NaN, set $op1 to NaN. Otherwise, if $op1 is different from $op2, replace $op1 by the next floating-point number (with the precision of $op1 and the current exponent range) in the direction of $op2, if there is one (the infinite values are seen as the smallest and largest floating-point numbers). If the result is zero, it keeps the same sign. No underflow or overflow is generated. Rmpfr_nextabove($op1); Equivalent to `mpfr_nexttoward' where $op2 is plus infinity. Rmpfr_nextbelow($op1); Equivalent to `mpfr_nexttoward' where $op2 is minus infinity. $si = Rmpfr_min($rop, $op1, $op2, $round); Set $rop to the minimum of $op1 and $op2. If $op1 and $op2 are both NaN, then $rop is set to NaN. If $op1 or $op2 is NaN, then $rop is set to the numeric value. If $op1 and $op2 are zeros of different signs, then $rop is set to -0. $si = Rmpfr_max($rop, $op1, $op2, $round); Set $rop to the maximum of $op1 and $op2. If $op1 and $op2 are both NaN, then $rop is set to NaN. If $op1 or $op2 is NaN, then $rop is set to the numeric value. If $op1 and $op2 are zeros of different signs, then $rop is set to +0. ############## RANDOM NUMBERS Rmpfr_urandomb(@r, $state); Each member of @r is a Math::MPFR object. $state is a reference to a gmp_randstate_t structure. Set each member of @r to a uniformly distributed random float in the interval 0 <= $_ < 1. Before using this function you must first create $state by calling one of the 3 Rgmp_randinit functions, then seed $state by calling one of the 2 Rgmp_randseed functions. The memory associated with $state will be freed automatically when $state goes out of scope. Rmpfr_random2($rop, $si, $ui); # not implemented in # mpfr-3.0.0 and later Attempting to use this function when Math::MPFR has been built against mpfr-3.0.0 (or later) will cause the program to die, with an appropriate error message. Generate a random float of at most abs($si) limbs, with long strings of zeros and ones in the binary representation. The exponent of the number is in the interval -$ui to $ui. This function is useful for testing functions and algorithms, since this kind of random numbers have proven to be more likely to trigger corner-case bugs. Negative random numbers are generated when $si is negative. $si = Rmpfr_urandom ($rop, $state, $rnd); # mpfr-3.0.0 and # later only Generate a uniformly distributed random float. The floating-point number $rop can be seen as if a random real number is generated according to the continuous uniform distribution on the interval[0, 1] and then rounded in the direction RND. Before using this function you must first create $state by calling one of the Rgmp_randinit functions (below), then seed $state by calling one of the Rgmp_randseed functions. $si = Rmpfr_grandom($rop1, $rop2, $state, $rnd); Available only with mpfr-3.1.0 and later. Generate two random floats according to a standard normal gaussian distribution. The floating-point numbers $rop1 and $rop2 can be seen as if a random real number were generated according to the standard normal gaussian distribution and then rounded in the direction $rnd. Before using this function you must first create $state by calling one of the Rgmp_randinit functions (below), then seed $state by calling one of the Rgmp_randseed functions. $state = Rgmp_randinit_default(); Initialise $state with a default algorithm. This will be a compromise between speed and randomness, and is recommended for applications with no special requirements. $state = Rgmp_randinit_mt(); Initialize state for a Mersenne Twister algorithm. This algorithm is fast and has good randomness properties. $state = Rgmp_randinit_lc_2exp($a, $c, $m2exp); This function is not tested in the test suite. Use with caution - I often select values here that cause Rmpf_urandomb() to behave non-randomly. Initialise $state with a linear congruential algorithm: X = ($a * X + $c) % 2 ** $m2exp The low bits in X are not very random - for this reason only the high half of each X is actually used. $c and $m2exp sre both unsigned longs. $a can be any one of Math::GMP, or Math::GMPz objects. Or it can be a string. If it is a string of hex digits it must be prefixed with either OX or Ox. If it is a string of octal digits it must be prefixed with 'O'. Else it is assumed to be a decimal integer. No other bases are allowed. $state = Rgmp_randinit_lc_2exp_size($ui); Initialise state as per Rgmp_randinit_lc_2exp. The values for $a, $c. and $m2exp are selected from a table, chosen so that $ui bits (or more) of each X will be used. Rgmp_randseed($state, $seed); $state is a reference to a gmp_randstate_t strucure (the return value of one of the Rgmp_randinit functions). $seed is the seed. It can be any one of Math::GMP, or Math::GMPz objects. Or it can be a string of digits. If it is a string of hex digits it must be prefixed with either OX or Ox. If it is a string of octal digits it must be prefixed with 'O'. Else it is assumed to be a decimal integer. No other bases are allowed. Rgmp_randseed_ui($state, $ui); $state is a reference to a gmp_randstate_t strucure (the return value of one of the Rgmp_randinit functions). $ui is the seed. ######### INTERNALS $bool = Rmpfr_can_round($op, $ui, $rnd1, $rnd2, $p); Assuming $op is an approximation of an unknown number X in direction $rnd1 with error at most two to the power E(b)-$ui where E(b) is the exponent of $op, returns 1 if one is able to round exactly X to precision $p with direction $rnd2, and 0 otherwise. This function *does not modify* its arguments. $si = Rmpfr_get_exp($op); Get the exponent of $op, assuming that $op is a non-zero ordinary number. $si = Rmpfr_set_exp($op, $si); Set the exponent of $op if $si is in the current exponent range, and return 0 (even if $op is not a non-zero ordinary number); otherwise, return a non-zero value. $si = Rmpfr_signbit ($op); Return a non-zero value iff $op has its sign bit set (i.e. if it is negative, -0, or a NaN whose representation has its sign bit set). $si2 = Rmpfr_setsign ($rop, $op, $si, $rnd); Set the value of $rop from $op, rounded towards the given direction $rnd, then set/clear its sign bit if $si is true/false (even when $op is a NaN). $si = Rmpfr_copysign ($rop, $op1, $op2, $rnd); Set the value of $rop from $op1, rounded towards the given direction $rnd, then set its sign bit to that of $op2 (even when $op1 or $op2 is a NaN). This function is equivalent to: Rmpfr_setsign ($rop, $op1, Rmpfr_signbit ($op2), $rnd)'. #################### OPERATOR OVERLOADING Overloading works with numbers, strings (bases 2, 10, and 16 only - see step '4.' below) and Math::MPFR objects. Overloaded operations are performed using the current "default rounding mode" (which you can determine using the 'Rmpfr_get_default_rounding_mode' function, and change using the 'Rmpfr_set_default_rounding_mode' function). Be aware that when you use overloading with a string operand, the overload subroutine converts that string operand to a Math::MPFR object with *current default precision*, and using the *current default rounding mode*. Note that any comparison using the spaceship operator ( <=> ) will return undef iff either/both of the operands is a NaN. All comparisons ( < <= > >= == != <=> ) involving one or more NaNs will set the erange flag. For the purposes of the overloaded 'not', '!' and 'bool' operators, a "false" Math::MPFR object is one whose value is either 0 (including -0) or NaN. (A "true" Math::MPFR object is, of course, simply one that is not "false".) The following operators are overloaded: + - * / ** sqrt (Return object has default precision) += -= *= /= **= ++ -- (Precision remains unchanged) < <= > >= == != <=> ! bool abs atan2 cos sin log exp (Return object has default precision) int (On perl 5.8 only, NA on perl 5.6. The return object has default precision) = (The copy has the same precision as the copied object.) "" As of version 3.13 of Math::MPFR, some cross-class overloading is allowed. Let $M be a Math::MPFR object, and $G be any one of a Math::GMPz, Math::GMPq or Math::GMPf object. Then it is now permissible to do: $M + $G; $M - $G; $M * $G; $M / $G; $M ** $G; In each of the above, a Math::MPFR object containing the result of the operation is returned. It is also now permissible to do: $M += $G; $M -= $G; $M *= $G; $M /= $G; If you have version 0.35 (or later) of Math::GMPz, Math::GMPq and Math::GMPf, it is also permissible to do: $G + $M; $G - $M; $G * $M; $G / $M; $G ** $M; Again, each of those operations returns a Math::MPFR object containing the result of the operation. Each operation is conducted using current default rounding mode and, if there's a need for the operation to create a Math::MPFR object, the created object will be given current default precision. The following is still NOT ALLOWED, and will cause a fatal error: $G += $M; $G -= $M; $G *= $M; $G /= $M; $G **= $M; In those situations where the overload subroutine operates on 2 perl variables, then obviously one of those perl variables is a Math::MPFR object. To determine the value of the other variable the subroutine works through the following steps (in order), using the first value it finds, or croaking if it gets to step 6: 1. If the variable is an unsigned long then that value is used. The variable is considered to be an unsigned long if (perl 5.8) the UOK flag is set or if (perl 5.6) SvIsUV() returns true.(In the case of perls built with -Duse64bitint, the variable is treated as an unsigned long long int if the UOK flag is set.) 2. If the variable is a signed long int, then that value is used. The variable is considered to be a signed long int if the IOK flag is set. (In the case of perls built with -Duse64bitint, the variable is treated as a signed long long int if the IOK flag is set.) 3. If the variable is a double, then that value is used. The variable is considered to be a double if the NOK flag is set. (In the case of perls built with -Duselongdouble, the variable is treated as a long double if the NOK flag is set.) 4. If the variable is a string (ie the POK flag is set) then the value of that string is used. If the POK flag is set, but the string is not a valid number, the subroutine croaks with an appropriate error message. If the string starts with '0b' or '0B' it is regarded as a base 2 number. If it starts with '0x' or '0X' it is regarded as a base 16 number. Otherwise it is regarded as a base 10 number. 5. If the variable is a Math::MPFR, Math::GMPz, Math::GMPf, or Math::GMPq object then the value of that object is used. 6. If none of the above is true, then the second variable is deemed to be of an invalid type. The subroutine croaks with an appropriate error message. ##################### FORMATTED OUTPUT NOTE: When using the 'P' (precision) type specifier, instead of providing $prec to the 'P' specifier, it's now advisable to provide prec_cast($prec). The 'P' specifier expects an mp_prec_t but, prior to 3.18, we could pass it only an IV. This didn't work on at least some big-endian machines if the size of the IV was greater than the size of the mp_prec_t. The Math::MPFR::Prec package (which is part of this distribution) exists solely to provide the prec_cast sub. And the prec_cast sub's return value should be passed *only* to the 'P' type specifier. Nothing else will understand it. Passing it to something other than the 'P' specifier may produce a garbage result - might even cause a segfault. prec_cast($prec); Ensures that the 'P' type specifier will provide correct results. In Math::MPFR versions prior to 3.18 we could do only (eg) : Rmpfr_printf("%Pu\n", Rmpfr_get_prec($op)); But that didn't work correctly for all architectures. As of 3.18, that can be rewritten as: Rmpfr_printf("%Pu\n", prec_cast(Rmpfr_get_prec($op))); which should work on all architectures. Rmpfr_printf($format_string, [$rnd,] $var); This function (unlike the MPFR counterpart) is limited to taking 2 or 3 arguments - the format string, optionally a rounding argument, and the variable to be formatted. That is, you can currently printf only one variable at a time. If there's no variable to be formatted, just add a '0' as the final argument. ie this will work fine: Rmpfr_printf("hello world\n", 0); NOTE: The rounding argument $rnd can be provided *only* if $var is a Math::MPFR object. To do otherwise is a fatal error. See the mpfr documentation for details re the formatting options: http://www.mpfr.org/mpfr-current/mpfr.html#Formatted-Output-Functions Rmpfr_fprintf($fh, $format_string, [$rnd,] $var); This function (unlike the MPFR counterpart) is limited to taking 3 or 4 arguments - the filehandle, the format string, optionally a rounding argument, and the variable to be formatted. That is, you can printf only one variable at a time. If there's no variable to be formatted, just add a '0' as the final argument. ie this will work fine: Rmpfr_fprintf($fh, "hello world\n", 0); NOTE: The rounding argument $rnd can be provided *only* if $var is a Math::MPFR object. To do otherwise is a fatal error. See the mpfr documentation for details re the formatting options: http://www.mpfr.org/mpfr-current/mpfr.html#Formatted-Output-Functions Rmpfr_sprintf($buffer, $format_string, [$rnd,] $var, $buflen); This function (unlike the MPFR counterpart) is limited to taking 4 or 5 arguments - the buffer, the format string, optionally a rounding argument, the variable to be formatted and the size of the buffer ($buflen) into which the result will be written. $buflen must specify a size (characters) that is at least large enough to accommodate the formatted string (including the terminating NULL). If you prefer to have the resultant string returned (rather than stored in $buffer), use Rmpfrf_sprintf_ret instead. If there's no variable to be formatted, just insert a '0' as the value for $var. ie this will work fine: Rmpfr_sprintf($buffer, "hello world", 0, $buflen); NOTE: The rounding argument $rnd can be provided *only* if $var is a Math::MPFR object. To do otherwise is a fatal error. See the mpfr documentation for details re the formatting options: http://www.mpfr.org/mpfr-current/mpfr.html#Formatted-Output-Functions $string = Rmpfr_sprintf_ret($format_string, [$rnd,] $var, $buflen); As for Rmpfr_sprintf, but returns the formatted string, rather than storing it in $buffer. $buflen must specify a size (characters) that is at least large enough to accommodate the formatted string (including the terminating NULL). See the mpfr documentation for details re the formatting options: http://www.mpfr.org/mpfr-current/mpfr.html#Formatted-Output-Functions Rmpfr_snprintf($buffer, $bytes, $format_string, [$rnd,] $var, $buflen); This function (unlike the MPFR counterpart) is limited to taking 5 or 6 arguments - the buffer, the number of bytes to be written, the format string, optionally a rounding argument, the variable to be formatted and the size of the buffer ($buflen). $buflen must specify a size (characters) that is at least large enough to accommodate the formatted string (including the terminating NULL). If you prefer to have the resultant string returned (rather than stored in $buffer), use Rmpfrf_sprintf_ret instead. If there's no variable to be formatted, just insert a '0' as the value for $arg. ie this will work fine: Rmpfr_snprintf($buffer, 12, "hello world", 0, $buflen); NOTE: The rounding argument $rnd can be provided *only* if $var is a Math::MPFR object. To do otherwise is a fatal error. See the mpfr documentation for further details: http://www.mpfr.org/mpfr-current/mpfr.html#Formatted-Output-Functions $string = Rmpfr_snprintf_ret($bytes, $format_string, [$rnd,] $var, $buflen); As for Rmpfr_snprintf, but returns the formatted string, rather than storing it in $buffer. $buflen must specify a size (characters) that is at least large enough to accommodate the formatted string (including the terminating NULL). See the mpfr documentation for details re the formatting options: http://www.mpfr.org/mpfr-current/mpfr.html#Formatted-Output-Functions ##################### BASE CONVERSIONS $DBL_DIG = MPFR_DBL_DIG; # Will be 0 if float.h doesn't define # DBL_DIG. $LDBL_DIG = MPFR_LDBL_DIG; # Will be 0 if float.h doesn't define # LDBL_DIG. $min_prec = mpfr_min_inter_prec($orig_base, $orig_length, $to_base); $max_len = mpfr_max_orig_len($orig_base, $to_base, $to_prec); $min_base = mpfr_min_inter_base($orig_base, $orig_length, $to_prec); $max_base = mpfr_max_orig_base($orig_length, $to_base, $to_prec); The last 4 of the above functions establish the relationship between $orig_base, $orig_length, $to_base and $to_prec. Given any 3 of those 4, there's a function there to determine the value of the 4th. Let's say we have some base 10 floating point numbers comprising 16 significant digits, and we want to convert those numbers to a base 2 data type (say, 'long double'). If we then convert the value of that long double to a 16-digit base 10 float are we guaranteed of getting the original value back ? It all depends upon the precision of the 'long double' type, and the min_inter_prec() subroutine will tell you what the minimum required precision is (in order to be sure of getting the original value back). We have: $min_prec = mpfr_min_inter_prec($orig_base, $orig_length, $to_base); In our example case that becomes: $min_prec = mpfr_min_inter_prec(10, 16, 2); which will set $min_prec to 55. That is, so long as the long double type has a precision of at least 55 bits, you can pass 16-digit, base 10, floating point values to it and back again, and be assured of retrieving the original value. (Naturally, this is assuming absence of buggy behaviour, and correct rounding practice.) Similarly, you might like to know the maximum significant number of base 10 digits that can be specified, when assigning to (say) a 53-bit double. We have: $max_len = mpfr_max_orig_len($orig_base, $to_base, $to_prec); For this second example that becomes: $max_len = mpfr_max_orig_len(10, 2, 53); which will set $max_len to 15. That is, so long as your base 10 float consists of no more than 15 siginificant digits, you can pass it to a 53-bit double and back again, and be assured of retrieving the original value. (Again, we assume absence of bugs and correct rounding practice.) It is to be expected that mpfr_max_orig_len(10, 2, $double_prec) and mpfr_max_orig_len(10, 2, $long_double_prec) will (resp.) return the same values as MPFR_DBL_DIG and MPFR_LDBL_DIG. ($double_prec is the precision, in bits, of the C 'double' type, and $long_double_prec is the precision, in bits, of the C 'long double' type.) The last 2 of the above subroutines (ie mpfr_min_inter_base and mpfr_max_orig_base) are provided mainly for completeness. Normally, there wouldn't be a need to use these last 2 forms ... but who knows ... The above examples demonstrate usage in relation to conversion between bases 2 and 10. The functions apply just as well to conversions between bases of any values. The Math::LongDouble module provides 4 identical functions, prefixed with 'ld_' instead of 'mpfr_' (to avoid name clashes). Similarly, it provides constants (prefixed with 'LD_' instead of 'MPFR_') that reflect the values of float.h's DBL_DIG and LDBL_DIG. #####################

You can get segfaults if you pass the wrong type of argument to the functions - so if you get a segfault, the first thing to do is to check that the argument types you have supplied are appropriate.

Thanks to Vincent Lefevre for providing corrections to errors and omissions, and suggesting improvements (which were duly put in place).

This program is free software; you may redistribute it and/or modify it under the same terms as Perl itself. Copyright 2006-2013 Sisyphus

Sisyphus <sisyphus at(@) cpan dot (.) org>

syntax highlighting: